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Appendix

Figure  A.1: The Analytical Engine developed by Charles Babbage is regarded as the first programmable calculating
machine. (check permission)

 A.1. Information TheoryWe have de�ned information as something whih hanges the behavior of a system whih reeives it.It is diÆult to speify exatly what those ritial fators will be but to the extent that we an speifythem, we may be able to �gure out how to transit them. Information an also be de�ned as seletingone alternative from among several others. Transmission of representations though that isn't alwaystransmission of rih information.If we an �gure out what needs to be transmitted, we an determine the number of bits required totransmit them optimally. Examples of the surprising-ness of information. Being noti�ed that you havewon the lottery is truly surprising sine the hane of that is quite small. There is a wide range ofappliations for Information Theory. Though, it is diÆult to understand how muh information isbeing transmitted without knowing how the information is represented.
Figure  A.2: At least representations can be coded and transmitted in terms of bits. If they can be unpacked as they
were encoded, then there can be perfect information transfer. But, of course, not two people will not have the same
encoding and decoding systems.

 A.1.1. Measuring Information: EntropyFor ommuniation systems, it is desirable to enode as muh information as possible into a narrowhannel. This was the basis of the simple information transfer model of ommuniation. We wantto determine the most ompat representation for a message. This is useful for instane, for dataompression, data storage, and for Hidden-Markov Models (11.3.3,  A.5.5). Given a voabulary, we analulate the fewest number of bits needed to transmit a message [68].In omplex environments, is it really possible to measure information?Suppose we had a group of four people and we had to pik one of them (Fig.  A.3). Assuming they areequally likely to be piked, the probability would be 0.25. We would use Code1 or Code2 and we would
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Distribution1

Person Probability Code1 Code2

Abu 0.25 1000 00
Bob 0.25 0100 01
Cathy 0.25 0010 10
Dwayne 0.25 0001 11

Figure  A.3: Two coding systems for identifying which of four individuals might be selected in a lottery.The self-information of a message is related to probability of that message; that is, how likely orpreditable that message is (Eq.  A.1).
I(m) = −logP (m) ( A.1)\Entropy" is a measure of the disorder of a system o set of messages (Eq.  A.2). For the data inFig.  A.3, the entropy is H = X. Beause eah person is equally likely to be piked, we annot do anybetter than hane in guessing who that person is. However, this also means that the odes we use toidentify the person an be very eÆient. For the probabilities in Distribution2 (Fig.  A.4), the entropyis H = 1.8 and the odes to indiate whih of them has been seleted are not as eÆient as those for

Distribution1.
H(X) = −

k
∑

i=1

P (xi)log2P (xi) ( A.2)

Distribution2

Person Probability

Abu 0.40
Bob 0.15
Cathy 0.10
Dwayne 0.35

Figure  A.4: Unequal probabilities of being selected, as shown here, have lower entropy than equal probabilities
(shown in Fig.  A.3).Perplexity.Another way to think of entropy is as an indiator of the average \surprise" of the hoies. When theprobabilities of all hoies are equal, as in Distribution1, the level of surprise is maximized. Anotherway to look at this is ask what is the additional value ontributed by a given soure of information.Maximum entropy. Knowledge at the reeiver's end an ompress information muh more.

H(X, Y ) = ( A.3)Mutual information.Information valuation. Bayesian models for deiding how muh to value information soures.
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 A.1.2. Communication ChannelsOne we have a measure of information, we an ompare the amount of information able to be trans-mitted on di�erent hannels (Fig.  A.5). Communiation models ((se:ommuniationmdoels)). Wemight ask how muh information an be transmitted with a �xed number of bits in a ommuniationhannel. The bits able to be transmitted per unit of time, is the hannel apaity whih is also knownas the \bandwidth".
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Figure  A.5: Information transfer (adapted from[68]). (check permission)It is possible to alulate bits of information based on assumptions about the reeiver's apabilities.If the ommuniation hannel is imperfet (e.g., noisy), we ould alulate how muh information anbe transmitted. Signal proessing equations an be used to support tasks suh as speeh-proessing
(11.3.3) and evaluating the quality of mahine translation (10.13.1). Spei�ally, we an model translationas a noisy hannel between a soure and a reeiver [9].
 A.1.3. Applications of Information TheoryAppliations Sensor networks.Can we really measure information and meaning in people's heads? Can we even usefully measure howmuh information there is in a omplex information suh as a book or a videotape by measuring thenumber of bits in a digital opy of that resoure?

The Redundancy of Natural LanguageNatural language is highly redundant. Put another way, every letter, phoneme, or word is not totallysurprising. You should be able to make a good guess about the missing word in the sentene: \Youare reading a book about Information ". Redundany in natural language prevents misunder-standing. the amount of redundany in natural language is related to perplexity. Can we estimate theamount of redundany.Language is, e�etively, a oding system. Several approximations to English are shown in Fig.  A.6.These approximations are based on the likelihood of letter and word ombinations. One appliation isto mahine language translation (10.13.1).
Level Example Approximation

First order
Word level

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME
TO FURNISHES THE LINE MESSAGE HAD BE THESE.

Second order
Word level

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UN-
EXPECTED.

Figure  A.6: N-gram approximations to English[67]. (check permission)N-grams are partiularly useful for speeh proessing where the sequenes of phonemes is highly pre-ditive of spei� words.
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 A.2. CompressionThe ontent in almost all information resoures is redundant and an be ompressed. Most often thisis done to redue the amount of material whih has to be transmitted or stored. Compression is a typeof representation, but it is generally not a representation from whih semantis an be easily extrated.Information theory ( A.1.0) an measure the e�etiveness of the ompression.
 A.2.1. Issues for Compression

What Makes a Good Compression Scheme?There are many options in ompression; as with other aspets of information systems, the seletion ofthese options depends on the requirements of the users. There is a lose onnetion between ompressionand the preservation of meaning.
Efficiency Two main types of ompression are termed lossless and lossy. If it is possible to get anexat opy of an image bak after ompression, then the ompression is \lossless". If something is lostso that it is not possible to retrieve an exat opy, then the ompression is \lossy". Most ompressionalgorithms are lossy.Codes and ompression. Fixed ode length versus variable ode length.We an measure ompression by the \ompression ratio," whih is the ratio of the size of the �le beforeompression to its size after ompression.Codebook.Adaptive ompressions. Self-orreting odes.
Content Dependencies Some ompression shemes are good for spei� ontent. GIF ompressionworks partiularly well for line drawings while JPEG ompressions are espeially good for full-olorimages. Compression needs for astronomy or medial images are very di�erent from those for videogames.The amount of variability in ontent will a�et ompression needs.Self-referential odes.To the extent that a ompression sheme aptures semantially meaningful events.some of the semantis an be extrated from the ompressed formats. Therefore, the ompressedrepresentation may also be useful for retrieval.
Delivery, Storage, and Decompression Robust to paket loss.[??]Some storage devies (e.g., CDROM) and some networks (e.g., modems on voie telephone networks)deliver �xed data rates. Other systems deliver variable-bit rates (VBR).A system an provide real-time delivery, or may be real-time interative.Layers of multimedia are prioritized. Compression mathed with priority for transmission.The reipient has to know how to deompress the message.Compression and deompression take up a ertain amount of omputational resoures; the right ap-proah an optimize results.One might opt for software ompression or hardware ompression.



 A.2. Compression 509Tradeo�s are made regarding, for example, the amount of disk spae used versus the speed of searhes.\Transoding" is the transfer from one ompression system to another one. However, there an be asubstantial loss of quality in the proess.
Two Paradigms for CompressionCompression may be thought of as a type of representation (1.1.2). An optimal ompression would bebased on human pereption and information proessing, but algorithmi ompression may not seemto be based on the semantis of the material being ompressed. The ompressed signals neessarilyfollow the harateristis of the ontent. Speeh signals in a telephone are based on the range of speehneessary for speeh omprehension. Beause ompression often auses loss of ontent, the issue is howto minimize that loss in omprehensibility. These di�erenes an be understood in terms of InformationTheory ( A.1.0).

 A.2.2. Text Coding and CompressionCompression of the message. Text ompression tends to emphasize lossless ompression tehniquesbeause there is relatively little data and any loss an be signi�ant. However, there may not be toomuh need for this sine is it heap to transmit text.Many oding systems have been developed. Hu�man Coding and Hu�man Trees. Earlier, we omparedthe entropy of oding two sets of events with a two-bit ode ( A.1.0). Hu�man odes attempt to maththe length of a ode with the frequeny of its ourrene in the family of messages to be transmitted.If we are transmitting letters, given that the letter \e" is the most ommon letter in English, it wouldbe the shortest term (Fig.  A.7).A seond version of this an be seen in Fig. ??. Letter and frequeny (Korfage example).
Distribution3

letter Probability Code1

e 0.675 1
i 0.125 01
o 0.125 10
l 0.125 11

Figure  A.7: An example of a Huffman Code in which high probability items are given short codes. (check values)

 A.2.3. Image Processing and CompressionCoding | ompression - formats. Pitorial material omes in many forms and the optimal oding forthose varying shemes an be very di�erent. A blak-and-white line drawing will have very di�erentompression harateristis from those of a omplex olored photograph. Bitmaps of text as for OCR.
[??] Displays and printing tehnology are desribed in  A.18.2.Edge detetion, shape detetion, textures.In run-length enoding, the sequene B,B,B,B,B,B,A,A,A ould be enoded as 6B3A That is six repe-titions of B followed by three repetitions of A.The tehnology for handling still images is now fairly well established. They are easy to digitize,ompress, transmit, and embed in douments.Visual words.Objet detetion tehniques (11.2.2) are similar to those used for still images.

Digital Encoding of ImagesIn a blak-and-white image, only the brightness of pixels is measured. Gray sale. Color depth(Fig.  A.8).
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Pixels
R G B Visible Color

0 0 0 Black
256 0 0 Red

0 256 0 Green
0 0 256 Blue

256 256 256 White

Figure  A.8: All possible colors can be coded as levels of Red (R), Green (G), and Blue (B). 8 bits is often used for
each coding each of these base colors allowing 256 shades of each one.As noted earlier (4.2.3), human olor pereption is omplex. A variety of systems have been developedfor oding olors. Some are based on the human pereptual system (suh as HSL) and some are basedon tehnologial onveniene (suh as RGB). The most ommon system is RGB (red, green, and blue).The HSL system deals with hue, saturation, and luminane; some laim that it is loser to the humanvisual system as explained in 4.2.3, above. Still another system is YIV; Y stands for luminane, I forthe red-yan dimension, and V for the green-magenta dimension. YUV is used for broadast television;here, Y = luminane, U = blue-Y, V = red-Y.One element in olor oding is the way the olors are distributed on the olor spae; another element,olor depth, refers to the number of bits alloated for the representation of eah olor. One ommonsystem uses one byte (8 bits) assigned to eah of the red, green, and blue hannels. This allows enodingof 2563 (65K) olors.

Image Processing of PixelsThis kind of proessing is not objet-based. The quality of the image an be improved by adaptingpixels. From pixels to image proessing.Some speialized proessing is model-based.Noise suppression.Get a signal.[??]DitheringImage reognition.Content based image retrieval. CBIR.
Image CompressionImage ompression redues the amount of data neessary to reprodue images. This failitates storingdata on a disk or sending it over a network. Ideally, we ould �nd a small set of data and a fewsimple parameters that desribe the omplexity of an image. There is a great deal of redundany inmost images and this redundany an be used in many ways to ompress the image. Adjaent pixelsare often similar in olor. This an be used to take advantage of lossless ompression with run-lengthenoding similar to that desribed for text ( A.2.3). TIFF ompression is lossless.
Lempel-Ziv-Welch (LZW) GIF images use the Lempel-Ziv-Welh (LZW) algorithm whih is based onprobability funtions.
Discrete Cosine Transformation (DCT) Disrete Cosine Transformation (DCT) onverts the olors ofthe image to frequenies. DCT is like Fourier transformations ( A.2.4). Low frequenies enode thedominant olors and higher frequenies enode the transitions.
Wavelets Wavelets are similar to DCT in haraterizing an image on its frequenies. They are alsosimilar to Fourier ompression ( A.2.4). However, DWT Wavelets are more exible in representing objets
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Fractal Compression Fratal ompression uses repeated appliation of an algorithm to approximatethe original image ( A.10.2), whih is generated by reursive appliation of the program.Transformations: rotation, dilation, reetion
Image FormatsBeyond the ompression algorithm applied to individual frames, a wide range of ompressed imageformats has been developed, a few of whih are in widespread use. JPEG and GIF are the most ommonformats and will be onsidered here. Graphi Interhange Format (GIF) uses the LZW algorithm. TheGIF spei�ation inludes omposite images. These an be used to reate apparent motion in an imageand are known as animated GIFs.The JPEG (Joint Piture Experts Group) format is bloky.Typial ompression ratios for JPEG are on the order of ..[??] A 100KB �le might be redued to 10KB.There are several levels of quality for JPEG images and the quality seleted will a�et the amountof ompression. JPEG is generally better than GIF for olor pitures beause the underlying DCTtransformation allows a wider variety of transitions to be represented.
Transmission Progressive transmission allows displays of varying qualities as they are reeived arossa network. Thus, a partial version of the image an be displayed before the transmission is ompleted.This sometimes works as interlaing.

Example: JPEG-18x8 pixel bloks. Slies,[73] has a detailed disussion of the JPEG standard and a good overview of otherompression tehniques. Disrete Cosine Transform (DCT, as desribed below). Quantized Q-matrix.
Example: JPEG-2Objet-based.[??]

Scene Recognition

 A.2.4. Audio Processing, Compression, and Coding
Audio Coding and Compression AlgorithmsThe hoie of the oding algorithm depends on what is being enoded and the environment in whihthe it has to operate. The two most important appliations for audio are speeh and musi. Thereare large di�erenes in the enoding requirements between musi and speeh. Speeh has a relativelynarrow dynami range while musi may vary to a muh greater extent. Some odes must operate inenvironments where some of the data is lost during transmission.Sound waves are onverted to analog eletrial signals by a mirophone. To reate digital audio, theseanalog signals must be onverted to numeri values. There must be an analog-to-digital onversion(AtoD). AtoD onversion is also known as Pulse Code Modulation (PCM); it involves two steps: sam-pling and quantization. Sampling is the number of times a signal is oded per seond. To get a fulloding of a signal, it must be sampled at twie its frequeny. One the signal is sampled, it must beassigned a numeri value whih an be represented in a omputer word. The ode is usually linear, butan also be logarithmi.Quantized digitized audio on a CD-ROM is not ompressed; the quantized samples are just stored asthey are oded. This simpli�es the eletronis and there is no need to ontrol the rate of playbak.When storage apaity is at a premium or network ongestion is a problem, ompression greatly reduesthe amount of data to be stored. In ontrast to ompression, in whih the number of bits is onstantregardless of what is ontained in the audio �le, Variable Bit-Rate (VBR) oding uses total bits when
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Figure  A.9: An analog sound wave (left) can be digitized (center) and then it can be “quantized” to a limited number
of levels (right).the data are easily ompressed.As noted earlier, speeh ontains phonemes whih appear as formants (11.3.3), relatively regular burstsof sound that are related to the meaning in the words. Linear preditive oding (LPC) estimates thepattern of these formants and odes them eÆiently for transmission (Fig. ??). These odes an beused to determine �lters. A variety of systems have been developed to make LPC oding more eÆient.For instane, DPCM (Di�erential PCM) enodes the di�erenes between pulse ode samples. If thetones are steady, then little additional information needs to be transmitted. DPCM is analogous toframe di�erenes for video ( A.2.5).

Audio Processing
Fourier Analysis The Frenh mathematiian Joseph Fourier had the insight that omplex waves ouldbe desribed as a ombination of regular sine waves. Beause eah sine wave has a known frequeny, aFourier analysis of speeh shows the main frequenies in that speeh. Fig. ?? shows the deompositionof a signal by Fourier analysis.This is the analysis desribed in the spetrogram in Fig. 11.15. The frequeny of speeh hanges rapidlyas the person produes di�erent sounds. Charaterizing these hanges in frequeny is important forspeeh proessing (11.3.3). A partiularly useful funtion for determining the spetrum is the Fast FourierTransform (FFT).
Compressed Audio Formats Beyond the spei� ode used, data may be formatted so that it an bestored and transmitted. A CD has no ompression; the physial design of a CD is desribed in  A.20.1.Some ommon audio formats are U-law, WAV, and AIFF. While MPEG-2 is primarily a video standard,the MPEG-2 audio standard has been adopted for studio quality sound reprodution. It has 64kbits/sper hannel with �ve main hannels (left, enter, right, and 2 for surround sound), and other speializedhannels, suh as one for low frequenies.Seure Digital Musi Initiative (SDMI).[??]Spei�ally, MP3 is audio layer 3 of the MPEG2 standard. The popular MP3 musi standard is partof MPEG2.

 A.2.5. Video Processing, Compression, and CodingVideo requires far more data than audio; therefore, ompression is partiularly important for networkingand storage. Additional disussion of video networking and video displays is found in ( A.18.2).
Frame DifferencesIn a video, one frame is muh like the next. This means that they do not have to be presented separately.Frame di�erenes in video often reet the motion of objets. Beause frame di�erenes are widely usedin ompression algorithms, it is often possible to detet motions from ompressed video. The top panelsof Fig.  A.10 show an objet moving from left to right. The middle right panel shows the overlap ofthe two positions of the objet, and the lower right panel shows the frame di�erenes.
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Figure  A.10: Consider a two-part object that moves as shown in the top two panels T1 and T2. If all Panel T1 is
transmitted by video, then all of T2 does not need to be transmitted; only the differences between the frames need
to be sent. The panel in the middle row shows the two frames superimposed on each other and the bottom panel
shows the differences in the two frames. Panel T2 can be generated from T1 by applying that difference. For this
example, the area in the open trapezoid should be reset to white while the black area needs to filled in (lower panel).
(smaller)

Digital Video Compression AlgorithmsFor digital video, the priniples of olor oding are similar to those for still images ( A.2.3), with the ad-dition of a temporal dimension. Codes for the ompression and deompression of audio were desribedearlier; video is also ompressed and deompressed by odes.The e�etiveness of the ode depends on the ontext in whih it is being used. If there is a lot of ationin a video lip, then fresh frames may be most e�etive, but if the lip is just a head-and-nek-shot ofa person talking, then frame-di�erenes should be suÆient.
Forward DCT Only those pixels that hange from frame to frame need to be updated. This allowsonly the di�erenes to be transmitted rather than all the pixels for every frame. There may be driftfrom the original piture and the image will need to be refreshed by re-sending the entire urrent frame.This fresh frame is alled a \key frame" (in MPEG, they are known as I frames).
DCT DCT is like still-image enoding. Entropy oding ( A.1.1).
3-D Fractal Video Compression Also ombines with bin-trees.
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Adaptive Algorithms As the name suggests, an adaptive algorithm adjusts to the type of ontent whihis being ompressed, and hene involves more ontent-spei� oding. MPEG-4 ((se:mpeg4)).
Digital VideoThis setion onsiders several di�erent formats for digital video.

Version Brief Description Section

MPEG-1 1.5 MB/s video (PC quality) This section

MPEG-2 Studio quality video (45MB/s) This section

MPEG-4 Component descriptions This section

MPEG-7 Video content description 11.6.2

MPEG-21 Framework for services 7.8.4

MPEG-A

MPEG-V

Figure  A.11: Summary of MPEG standards.The MPEG-1 standard is for PC-quality video (less than 1.5MB/s). Fig.  A.13 shows an EG1 streamof frames and frame di�erenes. The standard spei�es I, P, and B frames. The I frames are \keyframes"; they are essentially JPEG images. The B and P frames are obtained from frame di�erenes(Fig.  A.12). Deoding in software is pratial; enoding is omputationally expensive and often is notdone in real-time.
Frame Type Description

I frames They are JPEG ( A.2.3) images and are high-quality
reference frames. Transmission of these requires chan-
nel capacity. On some systems, these are called key
frames.

P frames forward compression

B frames use bi-directional (both forward and backward) com-
pression. These are particularly difficult to do in real
time.

Figure  A.12: Types of MPEG-1 frames as shown in Fig.  A.13.

Figure  A.13: Mix of frames in an MPEG-1 stream. (redraw-K) (check permission)

 A.3. Graph TheoryWe have seen many examples of graphs. Graphs are omposed of two types of objets: nodes andlinks. We have seen appliations of graphs aross many of the topis in this book suh as haraterizinghypertext (2.6.3) and soial networks (5.1.0). Along with state mahines and grammars, graph theory isa part of a �eld alled disrete math.Faebook equation. Tie strength.
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 A.3.1. Types of GraphsThe marosopi struture of the graph an beome important for large graphs. Di�erent types ofgraphs have di�erent properties. When a number of nodes are onneted by links, the pattern of theonnetions may be haraterized. Links in graphs may be direted, that is, they allow onnetions inone diretion but not in the other. The onnetions of pages on the Web form a \direted graph". Ifit is possible to get bak to a node by some route one it has been left, then the graph is said to haveyles. If there are no yles in direted graphs, they are said to be \ayli" and the full graph is saidto be a \direted ayli graph" (DAG) (Fig.  A.15). Citation networks, for instane, are DAGs { timeows in only one diretion.
Graph Any set of connected nodes.
Lattice
Directed graph Edges have a direction.
Tree Trees have only one path connecting any two nodes.

Figure  A.14: Types of graphs.
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Figure  A.15: Directed graphs. On the left, is an acyclic graph, in this case a tree. On the right, a cyclic graph,
specifically it is a Directed Acyclic Graph (DAG).Cliques. Two types of nodes. Bipartate graphs Fig.  A.16

d d d d d
t t t t t

Figure  A.16: Bipartate graph.There are several types of trees suh as ordered trees and minimum spanning trees. Trees may also beused to desribe sequenes of objets (e.g., PAT Trees).
 A.3.2. Graph SearchingMany problems suh as deision spae or a problem spae require searh. Strutured searhing in datastrutures suh as binary trees. If there is no index, the graph must be searhed by following links andexamining nodes. One ommon trade-o� is between breadth-�rst and depth-�rst searhing (Fig.  A.17).Tree-searhing is useful, for example, in parsing.Several strategies for searhing graphs have been proposed. AI as graph searh (3.7.1,  A.7.3).Heuristi. If value an be assigned at eah point, take the one �rst (Fig.  A.19) but there has to besome riterion for what is the t. Min-max pruning.The game of ti-ta-toe has a �nite number of solutions. Fig.  A.20 shows a game tree. This forms atree and positive outomes an be searhed. Symmetrial solutions are not shown. While the spae for
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Figure  A.17: Breadth-first (left) versus depth-first (right) searching. The numbers indicate the order in which the
nodes are searched.

Figure  A.18: If values are assigned to each node, those values can be used to guide the search. More complex
than simple depth-first and breadth-first search described above, branch-and-bound is t-first searching. As the tree
is explored, the likelihood of finding the target under each sub-tree is estimated and the node with the highest value
is opened. (redraw) (check permission)
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Figure  A.19: More complex than simple depth-first and breadth-first search described above, branch-and-bound is
t-first searching. As the tree is explored, the likelihood of finding the target under each sub-tree is estimated and the
node with the highest value is opened. (check permission)
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Figure  A.20: Fragment for moves in for tic-tac-toe forms a “game space”. Here just the first two moves of a game
are shown (other alternatives are symmetrical). We can estimate the value of each move by counting the number of
outcomes which lead to winning.ti-ta-toe is tratable, the game spae for hess is far to large to even be alulated. Heuristis mighthelp estimate the value of possible alternatives.There are many riteria for seleting the value of nodes. Branh-and-bound ( A.3.2). MIN-MAX ( A.9.3).and seletion of responses. Insurane.Searhing knowledge strutures.



 A.3. Graph Theory 517

 A.3.3. Graph AlgorithmsThere are many other topis in graph theory that we will onsider briey. General algorithms ( A.5.0).So, for Web haraterization (2.6.3) or for validating the oherene of a Web site. Finding the pathsthrough a hypertext. These problems may be viewed abstratly as the onnetions of nodes amongthem.Graph drawing plans the layout of graphs [20]. For instane, when laying out a data map or a owhart, the graph drawing proedure might attempt to minimize the number of rossings (Fig.  A.21)The goals would be to determine whether two graphs are idential in struture. This inludes \graphmathing," \graph homology," and \graph ongruene".
Figure  A.21: Two ways of connecting five points. The approach on the left minimizes the length of the lines. While
on the right the number of crossings is minimized.Dynami graph layout and interfaes. If a display is resized, what is the way to redraw a graph basedon it. [45], [52].One strategy for pruning would ut o� those links that do not onnet to other links (Fig.  A.22).
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Figure  A.22: The graph on the left can be “pruned” to create the one on the right by eliminating those nodes that
are connected to only one other node. (check permission)Beyond pruning to \graph partitioning" (Fig.  A.23). That is, �nd the plae to ut a large graph intotwo parts. This has been applied to �nding Web ommunities.Finding the way to onnet points in a graph. Spanning trees are trees whih onnet a set of points.A \minimum spanning tree" is the shortest possible spanning tree (Fig.  A.24).Path�nder networks (9.1.3).A more omplex problem is to �nd optimal paths through set of points. Traveling salesman problem.

 A.3.4. Very Large Graphs: From Graphs to NetworksInreasingly, very large sale graphs are being evaluated. Thousands of nodes. A network is a graphin whih we onsider movement of entities between nodes. Networks may be haraterized by somebasi properties [8]. One of the most important properties is the distribution of the probabilities ofonnetions between nodes. The simplest has random onnetion of network nodes. However, somenetworks have lusters of onneted nodes. These are Small-world networks [38] (Fig.  A.25).
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Figure  A.23: A large graph may be broken up into small graphs. The partition breaks only one link and leaves
roughly equal sub-graphs.
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Figure  A.24: A spanning tree connects a set of points (left). A minimum spanning tree (right) is the shortest possible
tree that connects all the points.
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Figure  A.25: Graphs differ in the number of short range connections. The graph on the left has random connections.
The graph on the right has a preference for connections to some nodes this is typical of many applications such as
the Web.Sale-free struture of network onnetivity. Relationship to Zipf's Law.

Graph ComplexityThe management of omplexity has been a reurrent theme in this text. System omplexity (3.8.3).Visual omplexity.Complexity is a hallenge. Complexity metris. Entropy ( A.1.0) as a measure of omplexity.Graph theory ( A.3.0). In Fig.  A.26, the network on the right is learly more omplex than the oneon the left. By one ommon measure, the omplexity is X, Y, Z. Thus, omplex an be a type ofsoftware ode metri ((se:softwaremetris)). Complexity of software (number of branhes and loops).Kolmogorov. Easier to develop and maintain software with less omplexity.
 A.3.5. Social Network AnalysisWe have seen many ases of soial information. Purely loal interation. Soial networks. Can lead toemergent behavior. Takes a mathematial approah. Who talks to whom (5.1.0).

Characteristics of Social Networks Another type of problem is to determine how lose any one itemis to any other item in a graph (Fig.  A.28). Beause of a lassi soial psyhology experiment donein the 1950's, this is known as the \degree of separation" [50]. In that study, Amerians were testedto see how many aquaintanes linked people from di�erent regions. This is a similar to the e�et ofthe distane between Web pages (2.6.3). This depends on the \lumpiness" of the graph spae. Citation
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Figure  A.26: Branching and looping can be used as a measure of the complexity of a graph. Here, the complexity
increases from left to right.

Figure  A.27: Massive center for Web interconnections [?]. (redraw) (check permission)analysis (9.1.2).
PPPPPP

������

dA dB dC dDd
E

Figure  A.28: The degrees of separation count how many steps there are between two points. C is 2 steps from A,
but D is also two steps from A when connected by E.

Characteristics of the Social Network Someone at node D is better onneted than a person at node J.Charateristis of the individual position in the soial network and of the soial network as a unit(Fig.  A.30). Consider the ommuniative patterns of people in the hypothetial ommuniations(\kite") network (Fig.  A.29). In the �gure, node \D" has high entrality and node E has high between-ness.Additional parameters in roles, ease of ow, et. Correlation oeÆient [51].Epidemis. Inoulation.Indeed, a ritial mass is needed or else, the disease will not be transmitted and will die out.People on the web an be disambiguated through soial networks. Pruning between-ness graph (9.1.3).Related to PageRank (10.10.2).
Diffusion of Information and Innovation When a new idea or innovation pops up, it gets spread arossgroups of people. Di�usion of innovations (Fig.  A.32). This is losely related to the soial network of
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Figure  A.29: An idealized communications network — called a “kite” — illustrates the different roles group-members
can play in communications. For instance, Person H is essential for I and J to communicate with the rest of the
group. (redraw)

Factor Description

Properties of Individuals
Centrality How central is it among other nodes in the network.
Between-ness Extent to which a node is between two other nodes.

Characteristics of Social Networks
Density (Coherence) What proportion of all possible links are actually present?
Cliques The extent to which subgroups occur.

Figure  A.30: Some measures of social networks.

Figure  A.31: Epidemic modeling. Normal, infected, and resistant agents are shown. (check permission)(redraw)the interation.Patterns of di�usion. Not simple forwarding. Likelihood of retweeting of politial messages. Stikinessand persistene.In some ases, the forwarding an beome a sort of ontagion. These are also models for infetionand epidemiology inluding the spread of omputer viruses of the spread of human disease. We antalk about ontagion and disease vetors. Moreover, these an be bloked with a type of inulation.Contats between omputers whih spread a virus. Following the notion of an epidemi, we an thinkof a software virus spreading as ontagion and we ould try to ontrol it with inoulation. In the aseof a omputer virus, the inoulation might mean applying software pathes.Implemented as an agent-based simulation (9.5.1).Improvisation as a dynami model of interation. Probability of message being aepted. Number ofontats about message. Networking and �nding jobs [?℄. Probabilisti models. This is too simple amodel as the ommuniation and individual ation and it must be applied with aution.
 A.4. More Models
 A.4.1. More Data Models



 A.5. Algorithms 521

Figure  A.32: Idealized curves for diffusion of innovations shows typical curves [?]. (create agent-based simulation).
(redraw)

The Relational Data Model: Using Relational Tables to Organize and Merge AttributesThe Relational Model organizes sets of related attributes into tables. Fig.  A.33 shows tables withexamples of the entity lasses in Fig. 3.55. This use of tables is eÆient beause it keeps relatedattributes together. The attributes an be joining entries aross tables as needed. Splitting attributesaross several tables failitates eÆient storage by minimizing redundany.To respond to queries, the attributes often have to be re-ombined from di�erent tables. A \key" isan attribute of two or more entities or entity lasses that forms a link between entities. In Fig.  A.33,StudioName is a ommonality between the two tables; it is an attribute for both entities. Thus,StudioName is a \key," and links the entities STUDIO and VIDEO, and onsequently the tablesVIDEO and STUDIO. The key guarantees there will be no ambiguity about whih rows of the tablesto link. The tables are usually optimized with a proesses known as normalization. Moving fromdesriptions of entity lasses to spei� instanes. Attribute value pair: Title="North-by-Northwest"
VIDEO Title Director Year StudioName

North-by-Northwest A. Hitchcock 1959 MGM
Toy Story J. Lasseter 1995 Disney
Crouching-Tiger A. Lee 2002 Columbia

STUDIO StudioName Phone Email

MGM 800-555-1458 orders@mgm.com
Disney 800-555-9783 orders@disney.com
Columbia 800-555-9783 orders@sony.com

Figure  A.33: Relational tables and sample values for the VIDEO and STUDIO entities.

Richer Data Models

RDF Data Model Linked data. Often looser struture than formal data models. This an be usefulwhen there are inonsistent systems of metadata.
Temporal Data Models

Modeling Stream Data

 A.4.2. ModelsSystem Identi�ation.
 A.5. AlgorithmsAlgorithms desribe proedures for aomplishing spei� tasks. Algorithmi thinking should be fun-damental for eduation. Algorithms and data strutures (3.7.1).
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 A.5.1. Types of Algorithms\Algorithms" are proedures for solving problems. Algorithms often need to be oupled with appropri-ate data strutures ((se:datastrutures)). Algorithms have been developed for many of the tehniquesdesribed in this book. Here we turn to the examination of those abstrations. We briey disussedmany algorithms in the early hapters, and in the more detailed disussions of this hapter we havealready onsidered graph-based algorithms ( A.3.2). Fig.  A.34 shows a table of where some algorithmfamilies are disussed.
Algorithm Family Section

Dynamic programming (sec:dynamicprogramming)
Encryption  A.13.0

Graph algorithms  A.3.2

Compression algorithms  A.2.0

Machine Learning  A.11.0

Parsing  A.5.4

Text and Web Processing (sec:moretextretrieval)

Figure  A.34: Guide to the discussions of some major algorithm families.There may be several algorithms for ompleting any given problem, and they may possess di�erentdegrees of eÆieny in terms of omputational ost, memory, or time. Sine most interesting problemsare omplex, it is generally useful to �nd algorithms that are eÆient even when the number of termsgets large. The extra e�ort required to do addition may inrease linearly as the number of terms grows.Global algorithms take all the data as a unit. These are often the more e�etive, but they an bevery expensive omputationally. Other algorithms suh as neural networks are \loal". That is, thealulations are obtained in steps. A similar dimension is whether the solution is found all at one orwhether it is found in iterative steps.
 A.5.2. Data Structures
 A.5.3. Computational ComplexityFor large problems, the omplexity an make a big di�erene in whether a adequate solution an beobtained in the available time. Indeed, we measure the omplexity of algorithms in terms of the amountof time they take to omplete. Some problems, suh as adding a onstant to all the members of listare linear. Other problems, suh as �nding the sum of all pairs of numbers in a list are n2. The mosthallenging problems are said to be \NP hard"; their diÆulty grows as a polynomial funtion of theirsize. Combinatori explosion.

Figure  A.35: Comparing algorithm completion time.

 A.5.4. Parsing GrammarsStrutured objets. Here we explore additional details of the algorithms desribed earlier (10.4.2, 10.4.2) aswell as some other parsing algorithms.
State-Machine ParsingAs noted earlier, natural language an be approximated by a state mahine. Extended state mahines

(3.10.1) an be used for parsing. This works partiularly well for formal and simple languages. Spei�-ally, they need to expanded with reursion and otherwise augmented as ATNs.



 A.5. Algorithms 523Fig.  A.37 shows a fragment of a phrase-struture grammar, while Fig.  A.38 shows a very simplelexion. Spei�ally, it shows rewrite rules for the sentene \The dog bit the boy". Fig.  A.39 showsthe parse tree for this sentene. Colletions of tree-strutured data | in most ases parse trees | arealled a treebank (e.g., [15]).
Rewrite Rules Description

LHS RHS

S NP + VP Sentences (S) are composed of Noun Phrases (NP) and Verb Phrases (VP)

NP N, D + N Noun Phrases (NP) can be composed of a Noun (N) or a Determiner (D) (i.e., ‘the’) and
a Noun (N)

VP V, V + NP Verb Phrases (VP) can be composed of a Verb (V) or a Verb and a Verb Phrase (VP)

Figure  A.36: Fragment of a phrase-structure grammar. LHS= Left hand side. RHS=right-hand side.

Figure  A.37: State machine notation showing that one or more adjectives can be repeated before a noun.

Node LexiconNoun dog, boyDeterminer theVerb bit
Figure  A.38: Lexicon for simple phrase-structure grammar example.

Figure  A.39: Parse tree for “the dog bit the boy”. (redraw) (check permissions)\Garden path" sentenes. These may require baktraking (3.7.1,  A.7.2).
Other Parsing MethodsMany additional algorithms have been developed.Chart parsing. Reursive desent parsers. It helps to keep many versions of a parse ative.

 A.5.5. Hidden Markov ModelsCould we formalize the insight we had in Fig. 10.12? Sequential models. Hidden Markov Modelsprovide a statistial tehnique for modeling sequenes. They are weighted automata (10.4.2). Indeed,HMMs may be thought of as a statistial version of grammars. Reall that we used Hidden Markov



524 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13

Type Term

S NP+VP

NP N, ART+N

VP V+NP

Type Term

N rain, umbrella

ART the

V hit

Figure  A.40: Simple re-write rules (left) and lexicon (right) for the example grammar.

Step Description

1. If the current state can be re-written, use-rewrite rules and increment level.

2. If state cannot be re-written (at terminal node), check active word against type
of the terminal node (active) word.

3. If that matches, take new terminal word and pop up level and check to see that
all tests have been performed there.

3a If that matches, take new active word and pop up level and check to see that
all tests have been performed there.

3b If there is no match and the state cannot be re-written, back up to previous
alternative branches until finding one where a match is possible.

4. If all the active words have been matched, then the parse succeeds.

Figure  A.41: Simple transition-network parsing algorithm.

Step Active Word Action/Comments

1 The Start, expand S to (NP[1]+VP[1])

2 The try NP[1] as (N[2]), no match, try next alternative for NP[1]

3 The try NP[1] as (ART[2]+N[2]), match ART[2], next word, try NP[2]

4 rain try N[2], match, next word, pop up to level 1

5 hit try VP[1] as (V[2]+NP[2]), match V[2], next word, check NP[2]

6 the try N[3], no match, try next alternative for NP[2]

7 the try NP[2] as (ART[3]+N[3]), match ART[3], next word

8 umbrella try NP[3], match, no more words, pop up to level 0

9 Done Valid parse!

Figure  A.42: Parse of the sentence “The rain hit the umbrella”.

The bear hug created a stir

Figure  A.43: Parse for “The bear hug created a stir”. Note that a parser first tries to treat bear as a noun but then
has to backtrack and treat it as an adjective.Models an desribe sequenes suh as the phonemes that represent a spoken word. We have seen manyappliations of HMMs. HMMs are a type of supervised learning algorithm ( A.11.3) in the sense that thetraining determines the values of parameters. We have seen appliations for parts of speeh 6.2.2, 10.4.1and speeh itself 11.3.3.

Selecting an HMM Architecture and Fitting Training Data to that ArchitectureThe �rst step is to selet an HMM arhiteture by deiding what onstraints an be plaed on theHMM. For instane, for speeh the models are fed forward. A typial HMM arhiteture is shown inFig.  A.44.The weights for HMMs are usually generated by a supervised learning proedure. Large orpora fortraining examples. Trying to �t the data into the model. We must have a tagged training orpus. Theforward-bakward algorithm or the more general, Entropy Minimization (EM) algorithm,1 is used fortraining an HMM ( A.1.1) (Fig.  A.45). These ombinations may make reognition. These are based
1This is also known as the Baum-Welch Algorithm
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Figure  A.44: Repeat of the HMM example which we saw earlier.on dynami programming. but they are probabilisti. The ontinuous stream of speeh is diÆult tosegment into phonemes.
Figure  A.45: Forward-backward algorithm for training HMMs.

Matching Sequences to the HMMsSeveral HMMs may be developed; then speeh samples an be mathed to them. This is a kind ofmodel-based reognition with HMM as the model. Spei�ally, the Viterbi algorithm uses a type ofdynami programming ((se:dynamiprogramming)) to determine the t-mathing sequene (Fig.  A.46).Soure-hannel model. Information theory ( A.1.0).
Figure  A.46: Viterbi algorithm for matching HMMs.HMMs are based on Markov models whih, generally onsider just one previous time step. AlthoughHMMs have proven very suessful, more than one time step may need to be onsidered.Segment and deal with segments without onsideration of the ontent of those segments. This allowssequential information to be onsidered. While we might want to use phrases, it may be better tosimply use groups of words with a �xed lengths.

 A.5.6. Configuration Rules
 A.5.7. Optimization and Constraint ProcessingSeveral types of problems. 0Z0l0Z0ZZ0Z0Z0l00ZqZ0Z0ZZ0Z0Z0Zq0l0Z0Z0ZZ0Z0l0Z0qZ0Z0Z0ZZ0Z0ZqZ0

Figure  A.47: The 8-queens problem demonstrates the value of algorithms to solve problems that are very difficult
to solver by trial-and-error. The queens need to be lined up so that no two are on the same vertical, horizontal or
diagonal row.
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 A.5.8. Version Tracking and Version ManagementKeeping trak of hanges to a doument. Fig.  A.49. Dynami data. Files with periodi updates.Deteting di�erenes in versions. Merge and split. Move. Keeping trak of version history.

Figure  A.48: Versioning. (under construction) (redraw)
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Figure  A.49: Keeping track of versions.Version management for software.
 A.6. Additional Search Engine Procedures and Algorithms
 A.6.1. NormalizationPreproessing Text. Inverted indexing. Words (6.2.1). Tokenization, stemming, and normalization.Normalization.
 A.6.2. Inverted Indexes
 A.6.3. Calculating Term Weights in the Vector Space ModelAs desribed earlier (10.9.2) a text may be represented as a \bag of words" in whih the order of thewords is not taken into onsideration. Compositionality (1.1.3). Fig.  A.50 shows a term-by-doumentmatrix for a hypothetial doument olletion dealing where eah term is just three items.Here, we use a very simple tf and idf as de�ned bak in (10.9.2). The alulated values are shown inFig.  A.51.

Similarity and Query MatchingSimilarity of douments from word overlaps [75]. There are several ways to measure similarity between
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Document Query
Term D1 D2 D3 D4 D5 df Q1

1 apple 1 3 2 1 3 5 1
2 banana 4 0 3 0 1 3 1
3 computer 1 4 0 2 5 4 0

Figure  A.50: A simplified term-by-document matrix for a hypothetical collection. The number of occurrences of ten
terms is shown for six documents. The total number of terms in the document is shown on the bottom line.

Document

Term D1 D2 D3 D4 D5

1 apple 1.0 3.0 2.0 1.0 3.0

2 banana 6.7 0.0 5.0 0.0 1.7

3 computer 1.3 5.0 0.0 2.5 6.3

Figure  A.51: tf ∗ idf weighting of the documents from Fig.  A.50.two douments or between a doument and a query. Some of these approahes simply ount thenumber of overlapping words. Other tehniques are based on a alulation of the distane between thedouments.For multi-word queries, a more formal de�nition of similarity is needed. The \osine distane" betweenthe query and the douments is alulated separately for eah doument following Eq.  A.42

cosine distance between DocumentD and QueryQ =

n
∑

t=1

((tf ·idf)tD
× (idf)tQ

)

√

√

√

√

n
∑

t=1

(tf ·idf)2tD
×

√

√

√

√

n
∑

t=1

(idf)2tQ

( A.4)The math is Document3 (Fig.  A.52). This is reasonable beause it has a pattern of tf ·idf sores thatbest mathes the query idf . They an be improved with more omplex tf and df .
Document

D1 D2 D3 D4 D5

0.79 0.36 0.92 0.26 0.46

Figure  A.52: The “cosine distance” between the document tf ·idf values (Fig. ??) and the query idf values.
Document3 matches the query t.

tf =
log2(number of times the term appears in the document + 1)

total number of terms in the document
=

log2(td + 1)

Td

( A.5)

idf = log2

(number of documents in the collection

number of documents with the term

)

+ 1 = log2

( D

Dt

)

+ 1 ( A.6)The basi tf ·idf formula inludes of the terms in di�erent parts of the doument searh. However, thereare other fators that an also be onsidered suh as query term \prominene". Modern searh enginesemploy other onsiderations suh as term prominene.
2. This is derived from the inner product of the Document vector, D, and the Query vector, Q: cos(θ) = D.Q

|D||Q|
.
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 A.6.4. Dimensionality Reduction: Latent Semantic Indexi ng (LSI)In many problems there are too many features. Dimensionality redution redues the number offeatures by ombining them. The priniple of dimensionality redution has many appliations. Oneuseful example of dimensionality redution is the text retrieval proedure known as \Latent SemantiIndexing" (LSI) whih applied dimensionality redution to the term-by-doument matrix of the VetorSpae Model (10.9.2). The term \boat" and \yaht" are similar enough that they ould be ombined.In e�et, this reates a statistial thesaurus (2.2.2).Like the Vetor Spae Model, LSI usually uses the osine value for mathing. LSI an be used forretrieval [24] and for �ltering [29]. As a simple example, in a term-by-doument matrix (Fig.  A.53), twolusters of terms may be seen.
Document

Term D1 D2 D3 D4 D5 D6

boat 1 2 0 0 1 0

boats 3 0 7 0 0 0

sailing 4 1 1 0 1 0

water 2 5 3 0 0 0

car 0 1 0 0 6 2

automobile 0 0 0 4 0 5

highway 1 0 0 1 3 0

tires 0 0 0 4 0 2

Figure  A.53: In this hypothetical example of a term-by-document matrix, two clusters of documents and terms may
be easily identified. One set deals with boats and a second one deals with automobiles. Although the term “boat”
does not appear in Document2, the folding of the terms into the reduced-dimensionality LSI space will allow it to
be associated with that document.This proedure should eliminate spurious relationships among the words And fous on the most relevantrelationships. As with the Vetor Spae Model, queries are mathed to the douments by taking theosine distanes between the doument terms and the query terms. Beause this model produesa semanti spae, some psyhologial models have been based on LSI, suh as the Latent SemantiAnalysis (LSA) [47] of human semanti memory.Latent semanti indexing uses a linear-algebra tehnique whih is known as \singular-valued deomposi-tion" (SVD). This is related to other statistial tehniques suh as priniple omponents analysis (PCA)and typially, a high-dimensional spae is employed. SVD is also used for eigenfaes ((se:eigenfaes)).

 A.6.5. PageRank AlgorithmThe links from one Web page to another provide evidene about similarity of the ontents of thosepages. Several algorithms have been proposed to demonstrate this (e.g. [?, ?℄). However, PageRankfouses only on \authorities".Here we will onsider the details of an algorithm for alulating this. Reall that in Fig. 10.51, we ratedpages A and C highly if many other pages point to them. Moreover, if A and C are rated more highly,then B will also be rated highly.The PageRank algorithm adjusts the rating of pages (nodes) based on the rating of their neighborswith a type of spreading ativation ( A.10.3). This is alulated as shown in Eq.  A.7[54]. The Rank of adoument, R(Di), is related to the Rank of all thedouments that are onneted to it, C(Nj), where d is a damping fator between 0 and 1. Spei�ally,the PageRank of P0 is R(P0):
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R(P0) = (1 − d) + d(
R(P1)

LP1

) + ... + d(
R(Pn)

LPn

) ( A.7)Where:
P0: The target page
P1,...,Pn are pages linked to P0

L: outward links from P0

d: Dampening fatorWe an see how this operates for the very simple network in Fig.  A.54 using the values in Fig.  A.55.The overall e�et is that ativation ows from weakly onneted nodes to more highly onneted ones.
Figure  A.54: PageRank calculated for a small network. (use example from MRS)

Node Initial Ending
Value Value

A 0.4 x
B 3.1 x
C 1.1 x
D 3.3 x

Figure  A.55: PageRank calculations. As would be expected, the activation in the small network accumulates on
node A.

 A.7. LogicIf we know that \All People Are Mortal" and we know that \Pat is a Person" then it is logial that\Pat is Mortal". Logi is a formal method that supports qualitative reasoning and inferene. Logiis used to determine the \truth value" of statements given ertain assumptions and inferene rules.Like math, logi uses a formal notation and rules. Logi assumes a quantitative (often ategorial)proessing. Formal logi use ontologies for knowledge representation (2.2.2).Fig. ?? lists some ommonly-used logial symbols.Types of logi: Desription logi. We have seen several examples Knowledge representation. Deontilogi.Logi is most appliable to disrete ategories.As we will see in ( A.8.1), probability an be used for quantitative inferene. Logi versus argumentation
(6.3.5).
 A.7.1. Symbolic LogicThere are two fundamental types of inferene: Dedution and indution. We are generally onernedwith dedutive inferene. This type of logi was originally studied by Aristotle so it is alled \Aris-totelian logi". Propositional alulus inludes dedutive statements suh as, \If X is true then Y istrue".

Categorical SyllogismsSyllogism is a partiular illustration of dedution. For instane, we might attempt to determine thetruth of the inferenes of a syllogism (Fig.  A.56). Rules of propositional inferene.
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Statement Type Example

Claim if students work hard then they are happy
Assertion all the students in the school work hard
Inference therefore all the students are happy

Claim
Assertion
Inference

Figure  A.56: The first inference is valid (on the assumption that the premises are true) but the second is not.

Truth FunctionsWe introdued Booleans (3.9.2). E�etively, these are propositions suh as \doument has term X". Wean view Booleans truth tables using the more formalized notation. The XOR relationship is moresubtle. The output is TRUE if one or the other input is TRUE, but the output is FALSE if both inputsare TRUE or if both inputs are FALSE. The output is TRUE only if there is disrepany between theinputs, otherwise the output is FALSE.
XOR

Input 1 Input 2 Output

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSEBoolean expressions an be strung together as in the �rst line of Fig.  A.57. Sometimes, it helps tosimplify these expressions into a \normal form". The Conjuntive Normal Form (CNF) .... While theDisjuntive Normal Form (DNF)...
(Chicken AND Dessert) OR (Beef AND Dessert) OR (Chicken AND Coffee) OR (Beef AND Coffee)
(Chicken OR Beef) AND (Desert OR Coffee)

Figure  A.57: The expression on these two lines state the same relationship but the second, which is in Conjunctive
Normal Form, is more concise.Sometimes, it is most e�etive to use a tree to show omplex ombinations of Boolean relationships.The deision trees we onsidered earlier were binary OR-trees. They had only OR relationships, butit is also possible to have AND relationships in trees (usually these are indiated with a bar aross thehoies. Fig.  A.58 shows an AND-OR Tree for the CNF example in the previous table.
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Figure  A.58: And-Or trees. The cross-link indicates an AND relationship. (redraw).

Reasoning with Hierarchical RelationshipsInheritane as a model for reasoning (2.1.4).Problems of multiple inheritane.
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Predicate CalculusPrediates desribe the ontent of propositions. For instane, in the statement a > b the > is theprediate. Thus, prediate logi involves making inferenes about statements that inlude attributes.
Statement Description Example

p → q If p then q Apples have seeds.
p assertion There is an apple.
q the conclusion It has seeds.

Figure  A.59: Inference rules.This often inludes the quanti�ers \all" and \some". Fig. ?? shows some of the notation. Fig.  A.60gives an example. If M is a prediate \to be a man," then Mx would be interpreted as x is a man.
all students in the school work hard
∀x(Zx → W )

Figure  A.60: An example of a predicate calculus expression.Earlier, we introdued ontologies (2.2.2). In the more rigorous sense, ontologies provide the lexion ofthe prediate alulus.Assertion links.Frames as a generalization of hierarhies.
FramesFrames are a way of representing entity lasses. However, unlike Entity Classes from the ER model,they usually apply to general world knowledge. Still, the frame-slots are a lot like attributes. Fig.  A.62

Figure  A.61: Frames. (redraw)
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Figure  A.62: Frames. (under construction)Thus far, we desribed logi based on inferenes involving evaluating the validity of statements aboutspei� instanes. This is \�rst-order prediate alulus". Seond-order prediate alulus examinesthe validity of statements about relationships. Representing fats.
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 A.7.2. Complex Logical InferenceImpliations suh as double negative elimination.Inferenes reate new propositions. Given a set of statements, we an try to \hain" them together todraw inferenes. The objetive is generally to �nd a path from the initial state to the �nal goal. Weould start with the premises and build inferenes toward a goal (forward haining).Or, we ould start with the goal and attempt to reason bakward (bakward haining). Forwardhaining expands all propositions in order to �nd all possible impliations. Bakward haining identi�esthe goals and then progressively deomposes those goals into sub-goals Fig. 3.40. This proess is similarto \means-ends analysis" (3.7.1). These an also be viewed as examples of bottom-up proessing andtop-down proessing (10.1.5).

Figure  A.63: Backward chaining. (check permission)

 A.7.3. Knowledge Representation and Logic Programming La nguagesKnowledge representation (2.0.0). Formal languages for knowledge representation and logial inferene.
Declarative Logic Programming LanguagesSeveral logi programming languages have been developed. Fig.  A.64 shows some examples of Prologstatements about kinship. Given these de�nitions and assertions, we ould answer questions suh as\Is there a hild whose parent is Eve?"

Statement Explanation

woman(eve) Declare there is a woman named Eve.
man(adam) Declare there is a man named Adam.
child(abel) Declare there is a child named Abel.
mother(M,C):-woman(M), parent(M,C) Define that a mother is a woman who is a parent.
father(F,C):-man(F), parent(F,C) Define that a father is a man who is a parent.
mother(eve, abel) Declare that Eve is the Mother of Abel.
father(adam, abel) Declare that Adam is the Father of Abel.

Figure  A.64: Prolog is a computer programming language design to perform logic operations.

Procedural Models: Production SystemsApproahes suh as Prolog are \delarative" These may be distinguished from \proedural" models(Fig. ??). Delarative spei�es rules: this inludes logi. Proedural is a spei�ation for what is legalsuh as prodution systems.



 A.7. Logic 533Prodution systems are based on Condition-Ation pairs. That is, if ertain onditions are met, thenthe prodution \�res" and the ation is exeuted. Produtions may also be thought of as sets ofIF-THEN statements. SOAR [46] is another prodution system language ((se:produtionsystem)) thatallows deomposition of goals and seletion of rules. Fig.  A.65 traes the steps of a SOAR program asit is exeuting. Potentially, the priority of SOAR rules an be \learned" by storing those produtionsfor later use that were most e�etive. SOAR allows mahine learning ( A.11.0). by hunking (4.3.5).
0: ==>G: G1
1: P: P1 (farmer)
2: S: S1
3: ==>G: G3 (operator tie)
4: P: P2 (selection)
5: S: S2
6: O: O8 (evaluate-object O1 (move-alone))
7: ==>G: G4 (operator no-change)
8: P: P1 (farmer)
9: S: S3
10: O: C2 (move-alone)

Figure  A.65: SOAR Problem Space Computational Model trace[46]. There are Goals(G), Proposition(P), States(S),
and Objects(O). (check permission)

Expert SystemsExpert systems use inferene and reasoning for pratial appliations. These are often `rule-based,that is they are based on logial inferene. For instane, they may suh as prodution systems toinferene. Unfortunately, expert systems tend to be \brittle". That is, they may work well for thesituation for whih they were developed, but do not generalize well to new situations. These an alsobe deision support systems (3.4.2) deision support systems but there is a danger of inappropriateinferene. Furthermore, they may exeed the appliation domain of the system. For instane, the Aegisattak (Fig.  A.66).Tehnology failures ((se:tehfailures)).
Figure  A.66: Aegis.Fuzzy logi and probability of belonging to a set (Fig.  A.67).
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Figure  A.67: Normal local (left) and fuzzy logic (right).

 A.7.4. Representation and Reasoning with BeliefsEarlier, we disussed beliefs as an aspet of soial psyhology (4.5.0). In one of the senses of formaldesription of beliefs.In a model with several agents, those agents may have models the world, of eah other, and other agentsviews of the world. (Fig.  A.68). A person may believe something that is not true. Or, it may simplybe impossible to verify. If I believe the world is at...I believe in dragons....Belief is di�erent from on�dene.
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Figure  A.68: Beliefs.Con�dene in results.

 A.8. Probabilities and Probabilistic InferenceAlternatives to logial inferene whih was disussed in the previous setion. Toward plausible reason-ing. Indution. Unertain results. Sampling. Hypothesis testing.
 A.8.1. Basic ProbabilitiesWhile logial inferene is based on symboli inferene; it is also possible to make a probabilisti in-ferenes. Let us briey review probability. Eq.  A.9 shows the produt of two probabilities. Thisessentially an AND operation. For instane, this probability of getting a 2♣ AND 3♠ in one draw is1/13 + 1/13. Eq.  A.9 shows the sum of probabilities. This is essentially an AND. For instane, theprobability of getting a K♣ AND Q♣ in suessive draws is 1/13 * 1/13 (assuming you the ards arereplaed after eah draw). Note that the symbol ∩ is the same as and.

P (A and B) = P (A ∩ B) == P (A) ∗ P (B) ( A.8)

P (A or B) = P (A) + P (B) ( A.9)We an also de�ne onditional probability whih is, for instane, the hane of \Event A given EventB" that an be written as P (A|B).
P (A|B) =

probability of both Event A and Event B

probability of Event B
=

P (A ∩ B)

P (B)
( A.10)

 A.8.2. Bayesian PredictionLearning onditional probabilities. This is a ommon tehnique for mahine learning ( A.11.0). It analso be seen as a type of knowledge representation.
Bayes RuleIf we have expetations about how attributes predit membership in a ategory we may also be able todetermine that likelihood that objets in the ategory will show possess those attributes. Speially, ifwe know P(A|B), P(A), and P(B), we an determine P(B|A). This is known as Bayes Rule and itis the basis of learning about the features relevant for doing ategorization.

P (A|B) =
P (A ∩ B)

P (B)
( A.11)

P (B|A) =
P (A ∩ B)

P (A)
( A.12)

P (A ∩ B) = P (A|B)P (A) = P (B|A)P (B) ( A.13)Suppose there is a 0.5 probability douments with the word \training" in them also have the word\eduation" and the probability of the word \eduation" ourring in the douments is 0.8. If we know



 A.9. Formal Models for Decision Making 535the word \eduation" is in a doument, what is the hane that the word \training" is in that samedoument? Eq.  A.14:
P (“training”|”education′′) =

P (“training′′ ∩ “education′′)

P (“education′′)
=

0.5

0.8
= 0.625 ( A.14)

Bayesian ClassificationBayes Rule an also be applied to ategorization. Thus, if we know the frequeny of a set of ategoriesand we know the frequeny with whih terms our in douments belonging to those ategories, thenwe determine the probability of a new doument belonging to a ategory given the terms it inludes.If we know that an objet has a ertain attribute value, we might ask \what is the probability thatobjet or event belongs to a given ategory?" This an be determined with an extension of Bayes Rule(Eq.  A.15). For instane, Eq.  A.15 shows the probability of belonging to Category 1 (C1) given thatAttribute 1 (A1) has Value 1 (V1).
P (C1|A1V1) =

P (C1 ∩ A1V1)

P (A1V1)
( A.15)This may be generalized to multi-attribute ategories [26] (Eq.  A.16).

P (C|A1V1, A2V2, ..., ANVN ) =
P (C1 ∩ A1V1, A2V2, ..., ANVN )

P (A1V1, A2V2, ..., ANVN )
( A.16)

Bayesian NetworksAttribute-based onditional probabilities.Updating ausal networks [57].Used in text retrieval Fig.  A.69
Figure  A.69: Bayes Network visualization.Information gain in Bayesian alulations.

 A.8.3. Case-Based Reasoning (CBR)Case-based reasoning (CBR) attempts to �nd relevant examples to generalize from rather than tryingto develop a omprehensive statistial model [17]. For instane, when modeling the path of hurriane,it may be more useful to examine previous similar hurrianes rather than trying to rely on omplexsimulations. The researher must still �nd e�etive features and representations (Fig.  A.70). Retrieve,re-use, revise, return. Sets of examples may be maintained in ase libraries.
Formal Descriptions of CasesSetting, Ator, Goals, Sequene. Case-based reasoning ( A.8.3).
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Characterize problem to be solved

?
Find similar, problems in the corpus and how they were solved.

?
Adapt the procedure for the previous problem, apply, and evaluate results.

?
If successful, add to corpus.

Figure  A.70: Path of case-based reasoning.

 A.9. Formal Models for Decision MakingChoie and deision making have appeared earlier (3.4.1).Logi, Inferene, Planning, and Learning.The ontents of representations are sometimes presented diretly to the user. In many other ases, theymust be reassembled. Doing things with representations.Algorithms for both reognition and generation.The simplest task is making binary YES/NO deisions. For instane, we ould detet the possibility ofa terror attak from a umulative set of data.
 A.9.1. Signal ProcessingA signal arries information in the information theory sense ( A.1.0). A signal an be lost if there is toomuh noise. As an example, think about trying to listen to radio station when there's stati. You needto onentrate to detet the musi. The simplest approah to determining whether a signal is presentor absent. Fig.  A.71 shows distributions of signal and noise. The signal-to-noise ratio determines theease with whih the signal an be deteted. Consider trying to hear a telephone ring in another roomof your house. It is muh easier to detet the telephone when there is not any bakground noise suhas the radio playing or the shower running.

Figure  A.71: Distribution with overlap and a decision threshold. If the threshold is moved to the left, more signal
events can be detected but more errors are also made. However, it the threshold is moved to the right, fewer errors
are made but more signals are missed. (to be rendered)

 A.9.2. Signal DetectionDetetion is simply a deision whether a signal is present or absent. If the signal and noise are similar,it may be diÆult to tell them apart. Suess in monitoring the ourrene of events (signals).A measure of the suess of deteting signal is developed as follows. Fig.  A.71 also shows signal andnoise distributions. Also shown is a ut-point, whih is the threshold at whih an observer would deidethe signal (i.e., the telephone ring) was present or absent. There are four possible ombinations of signaland user responses (Fig.  A.72). The ut-point is normally seleted to minimize the number of errors,but other strategies for plaing the ut-point ould also be onsidered.
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Actual Signal
Present Absent

Yes Hit False Alarm
Observer’s (False Positive)
Judgment No Miss Correct Rejection
about Signal (False Negative)

Figure  A.72: 2x2 table for signal detection. The observations might not be accurate since they might be due to
noise, as suggested by Fig.  A.71.This is a type of lassi�ation problem.It is harder to understand somebody when they are talking in a noisy environment than in a quiet plae.The level of the signal ompared to the amount of noise is known as the \signal-to-noise ratio". Twofators determine the signal-to-noise ratio: The di�erene between signal and noise and the observer.This statisti is known as d'.{ d' { |- d' |-
Figure  A.73: Sometimes the noise is similar to the signal (left) and sometimes it is clearly different (right). When it is
similar, it takes a very sensitive detection device to accurately separate the noise from the signal. (label distributions)We should keep the ratio of False Positives and False Negatives onstant. We an do haraterizeobservers as to whether they have a bias toward false positives or false negatives. Compare the twodistributions and determine how good is an observer at telling the di�erene. Response operatorharateristi (ROC) urves (Fig.  A.74).
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Figure  A.74: The Response-Operator-Characteristic (ROC) diagram shows how an observer responds given
varying probabilities of Yes and No responses and the signal is varied. The diagonal represents chance performance.
As shown in the ROC diagram on the left, the further the ROC curve is from the diagonal, the better the discrimination.
The diagram on the right shows an analysis of whether the operator has a bias toward responding “present” a bias
toward responding “absent”.E-measure for information retrieval.Generally an issue for reognition proesses. Signal detetion is losely related to ategorization. Itdetermines whether an objet belongs to a given group or not [35]. The properties of signal detetion.

Recognizing Category MembershipAs we have seen, ategories are widely used in information systems (3.9.1, 4.3.0). We briey disussedhoie strategies earlier (3.4.1).
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Decision Networks

 A.9.3. More Game TheoryA well-known olletive ation game is the Prisoner's Dilemma, whih is illustrated by the values inFig.  A.75. Imagine two prisoners A and B, who were partners in the same rime but who are beinginterrogated separately by the polie. If they both onfess, they may get a moderate punishment (-3),but if one prisoner onfesses while the other does not the one who onfesses will get a light punishment(-1), and the one who does not will get a heavy punishment (-5). However if neither talks, there is nodiret evidene and they might both go free (+5).
Prisoner A

A does not talk A talks

Prisoner B B does not talk 5/5 -1/-5
B talks -5/-1 -3/-3

Figure  A.75: In the “prisoner’s dilemma,” the payoffs for each prisoner depend on the behavior of the other prisoner.
The cells of the table shows payoffs to each of the two prisoners.Game theory an also be used to explain long-term interation[65]. During the Cold War, the theory ofMutually Assured Destrution (MAD) developed based on game theory. the laim was that the onlystable equilibrium was the point at whih eah side ould destroy the other. Colletive ation gamesseek to analyze the deisions made by individuals when the outomes of those deisions are a�eted bythe deisions of other individuals. In many ases, one person or the other will have a lear advantage.However, the players and will tend to stabilize at an equilibrium point that has advantages for bothplayers. The Nash equilibrium is the solution for whih the players would not hange their strategieseven knowing the hoie of the opponent.

Country A
No Bomb Use Bomb

Country B No Bomb 0,0 -1000,10
Use Bomb 10,-1000 −∞,−∞

Figure  A.76: Game theory table for Mutually Assured Destruction (MAD). (revise)Strategies in risky situations. The most diretly appliable ompetitive strategy for making deisionsinvolving other individuals and/or imperfet information is one that piks outomes that maximize thebene�ts and minimize the risks. This is known as a \min-max" strategy. A person who has to make ahoie among a number of approahes may analyze the hanes of favorable and unfavorable outomes.This is reasonable sine it assumes that the opponent will also attempt to maximize his/her bene�t.Max-min as a fairness strategy.
Payoff

A B C D

Possible Gain +3 +5 +6 +6
Outcomes Loss -4 -4 -5 -6

Figure  A.77: According to a min-max strategy, the options with the minimum loss are selected and from those, the
options with the maximum gain are selected. Thus, option B would be selected. This has the minimum loss for that
gain and the highest possible gain. However using a max-min strategy, C would be selected. This has the minimum
possible loss and the maximum possible gain.
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 A.9.4. Subjective Multi-Attribute UtilityPeople may have their own utility for di�erent attributes and we should inlude these subjetive utilitiesin our models the hoies those people will make. Getting reliable values of subjetive utility is noteasy [27]. This is an example of \saling" (e.g., [?℄).
value of objecti =

j=N
∑

j=0

(attributeV alueij ∗ utilityj) ( A.17)We would like to estimate utility when multiple attributes are involved. If we know preferenes, wean work bakward and estimate the utility. Multi-attribute deision theory is a mathematial meansof analyzing deisions in whih there are several ompeting variables to onsider. In multi-attributedeision theory (or multi-attribute utility), eah variable is assigned a partiular utility value aordingto its importane and they are all plugged into a mathematial formula to determine what ombinationof variables produes the most desirable outome. For instane, a person might hose between twomodels of ars based on their attributes (see Fig.  A.78).
Type of Car

Dimension Compact Sports Car Sedan

Price 3 1 2

Fun 1 3 1

Safety 2 1 3

Figure  A.78: Several attributes of cars could be assigned values based on their favorability. A score of “1” is low
on that dimension and a score of “3” is high.

Type of Buyer

Dimension Yuppie Family

Price 1 2

Fun 3 1

Safety 2 3

Figure  A.79: Subjective utilities for two types of buyers. Higher numbers mean that the dimension is more important
for that type of buyer.

Yuppie Family

Dimension Compact Sports Car Sedan Compact Sports Car Sedan

Price 1*3 1*1 2*1 3*2 1*2 2*2

Fun 1*3 3*3 1*3 1*1 3*1 1*1

Safety 2*2 1*2 3*2 2*3 1*3 3*3

Overall preference 10 12 11 13 8 14

Figure  A.80: The Yuppie buyer will prefer the sports car while the Family buyer will prefer the sedan.

 A.9.5. Voting Systems and ElectionsVoting involves the alloation of units deision units aross andidates and rules for ombining thoseunits (8.4.3). A voting system needs to aurately reet the voters' preferene. Perhaps surprisingly,that does not always happen with simple majority rules ting. Fig.  A.81 shows one example of aompliations introdued in three-way rae. To solve this problem, a variety of voting riteria havebeen developed (Fig.  A.82). These may allow multiple votes per individual and preferene rankings ofseveral andidates [62]. End-2-End (E2E) eletroni voting seurity. Open soure voting software.
ElectionsSystem of voting and related proedures for determining government oÆials. Non-partisan supervisionof eletions.
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Strength of Preferences
Candidate V oter1 V oter2 V oter3 Mean

A 0.40 0.05 0.35 0.27
B 0.35 0.30 0.30 0.32
C 0.15 0.45 0.25 0.28

Figure  A.81: Majority rule may not result in the most preferred (on average) candidate being elected. If each voter
is allowed to cast only one vote, Candidate A would be elected as the top choice of the majority of the voters.
However if voters cast votes in proportion to their preferences, Candidate B would win.

Type Description or Example

Majority One vote per voter. Winner needs more than 50%
Plurality One vote per voter. Winner is the candidate with the highest number of votes.
Borda Voters rank order the alternatives. Candidate with the highest average rank wins.
Approval Cast one votes for each candidate the voter would accept. The winner is the candidates

with the highest number of votes.
Cumulative Each voter has multiple votes. These can be cast all for one candidate, or spread across

candidates. The winner is the candidates with the highest number of votes.
Instant run-off Successive run-offs narrow the field of candidates.

Figure  A.82: Several types of policies and criteria for elections.

 A.10. Mathematical ModelsWe have disussed many types of models and mentioned mathematial equations. Disrete math versusontinuous models versus ontinuous models. Relationship between mathematial models and sienti�models (9.2.3). Thus, an important distintion is between linear and non-linear models. These di�erin the power of the representation (1.1.2). Mahine learning, lustering and neural networks ( A.11.0).Models in siene (9.2.2). Deterministi versus probabilisti models. To an extent, all models an bethought of as mathematial funtions. Levels of models. Ordinal, Interval, For instane deision treesare qualitative models. These are representations based mathematial funtions. Free parameters.Over-�tting. Fitting data: Model + error.
 A.10.1. Linear ModelsIf we believe that some simple linear proess aounts for an e�et, we might attempt to �t the datafor that to determine the parameters. the linear model from the some data. An e�etive approah isoften to �nd the line that is the least-squares distane (Fig.  A.83). Underlying linear model plus errorin measurement.
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Figure  A.83: A straight line is fitted to a data points. A common approach is fitting with “least squares” which finds
the line that minimizes the sum of the square of the distance from the data points.Even simple models an provide immense analytial help. Fig.  A.84 illustrates how simple algebraimodels an be used to determine what is the ombination of prodution apaities to produe twoseparate produts. The two left panels desribe the prodution apaity of two types of ars (produt1 and produt 2). The right panel then uses linear algebra to resolve the onstraints posed by fatorsof prodution.
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Figure  A.84: Linear models can specify constraints and simple combinations of these constraints can be calculated.
On the right, the two linear constraints are intersected. If the first line shows the maximum level of X and the second
line shows the maximum level of Y, then the combination of the two shows the “feasible region” BELOW the
intersecting lines. In other words, that area within which parametric tradeoffs are possible.

 A.10.2. Non-Linear and Dynamical ModelsIn some ases, the interation between the omponents is often very unpreditable. When two adap-tive systems interat, they form a \dynamial system". These are also alled \o-evolutionary" or\mutually-ausative" systems. The evolution is determined by the diretion the pair of systems take.An example would be a person interating with another person | the ations of eah a�et the other.While some of these systems are haoti, others are stable.Sometimes linear equations are good representations for a proess; sometimes a more omplex, non-linear equation works better. We have already seen non-linear models used for mathematial simulations
(9.5.4). While linear systems are very powerful, many systems are non-linear. The representations aremathematial equations. Linear modeling, whih assumes that all e�ets an be modeled with straightlines, is e�etive only to a point. Equations with exponents. These models are the foundations ofomplex systems.
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Figure  A.85: A straight line can be an effective representation to describe a set of points (left). However, the line
is less satisfactory if the points are scattered (center) or if a curved line may be a better representation (right). A
representation that allows curved lines will also be more complex.

Power LawsThese are a family of ommon non-linear funtions. For instane, the long-tail (8.12.5) follows a powerlaw.
y = xz ( A.18)Some typial power law urves are illustrated in Fig.  A.86

Figure  A.86: Power laws.
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Long-Tail DistributionsPraeto

Figure  A.87: Long tail. (redraw)

Figure  A.88: When we expect data to fit a power law, deviations from the predicted pattern may indicate underlying
problems. Here, a drooping tail in eCommerce data suggests that the may not be enough representation of low-
frequency items. (check permission)

Zipf’s Law Closely related is a simple mathematial funtion known as Zipf's Law (Eq.  A.19) givesaurate desriptions of word frequenies. Zipf's Law states that the frequeny of observations for aword of a given rank number Pr, is equal to a onstant, k, divided by the rank, r:
Pr =

k

r
( A.19)Appliation of Zipf's Law. Example of word frequeny. Fig. ??.

1. the
2.
3.

Figure  A.89: Example data for Zipf’s Law.

Fractals and Self-SimilarityChaoti systems have no stable solutions. However, some do exhibit a property known as \self-similarity". Self-similarity suggests that there is a repetition of a pattern aross several di�erent sales.Fig.  A.90 gives two examples of this property. The self-similarity in some of these patterns generatesomplex patterns. There are appliations of fratals in image generation and ompression.Simulation of non-linear and omplex systems. Simulated annealing.Set point with a omparator.There are systems with the fators are interloking. Simple feedbak with a ontroller. Control theory(Fig. ??). Suh models are too simple. Unlike adaptive models in whih the representation itselfhanges.
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Figure  A.90: Self-similarity is illustrated on the left in the Sierpinski triangle in which equilateral triangles are carved
out of larger equilateral triangles[32]. (check permission) On the right is a fragment of the Mandelbrot Set which
shows a more complex self-similarity. Zooming in shows essentially identical patterns that are repeated at the finer
levels of granularity.

Figure  A.91: Energy surface. Finding an energy minimum. Simulated annealing.Sometimes we need several interating equations to model a system, These form \dynamial systems"Sometimes these equations onverge to a solution and a system with feedbak will maintain homeostasisaround a ontrol point. In other feedbak systems diverge and no solution is possible. Those thatonverge reah a single \�xed-point" equilibrium are said to be attrators (Fig.  A.92). Sometimes theequations do not onverge to a single point but follow a regular pattern aross several solution points.In a few ases, there is no simple pattern to the solution.
Figure  A.92: Trajectories of an attractor (left) and a strange attractor (right)[32]. (check permission)There are sometimes omplex systems. Chaos omes from large di�erenes due to small hanges ininitial onditions. An example is the \buttery e�et" in whih an apparently insigni�ant event inone part of the system an be ampli�ed to have a major impat later in the system's evolution.Critial phenomena. Emergent phenomena.Puntuated equilibrium.Sometimes simulations are used to model these systems but one has to be areful about the aurayof the simulation.Hysteresis.

Dynamical SystemsNon-linear systems with feedbak. These are sometimes alled \o-evolutionary systems". Systemdynamis ( A.10.2). The two omponents interat together and their ombination reahes a unique state.
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Figure  A.93: A pair of interacting adaptive systems can be treated as a single complex system. The output of one
system forms part of the input for the other system. (re-orient horizontally)Some equations model how a system hanges through time. Some of these onsistently onverge to asingle point aross many trials; other systems diverge. It is possible to desribe omplex interationswith sets of equations. These are relatively easy to solve when the funtions are all linear, However,the solutions are more ompliated when the equations are non-linear.

System DynamicsSystem Dynamis inlude feedbak but also \stoks". For instane, in a supply hain analysis (8.12.1) thegoal might be to keep an inventory of parts roughly onstant while they were being used in manufa-turing. Or, as illustrated in Fig.  A.94, the level of population ould be modeled as it is inreased bybirths and dereased by deaths. Moreover, there is a positive feedbak suh that the more people thereare, the more births there will be. On the other hand, the more deaths there are, the fewer deathswould be expeted in the future.The interloking feedbak loops often make hange extremely diÆult.This is like a data ow diagram (3.10.1). Suh models an provide insight into why some proesses areso resistant to hange [66].There is no exat omputational solution for these models. Numerial analysis.

Figure  A.94: Flow in a population-growthdiagram. As the population increases, both births and deaths will increase.
(redraw)Exampless of supply hain appliations (8.12.1).

Causal Models

System Dynamics Models An important lass of models are those whih an represent rates of hange,in other words, for models whih are highly non-linear. For instane, we might like to model howpopulation size hanges as food supply hanges. These have feedbak. These are more diÆult to model.



 A.10. Mathematical Models 545Beause of the interation of fator approximation must be done by numerial analysis. System-dynamimodels ( A.10.2). Simulations (9.5.0). Causal loop diagrams (Fig.  A.95). Complex systems ( A.10.2).

Figure  A.95: Qualitative causal loop model. (redraw)(check permission)Causation is intergral with explanation (6.3.4)espeially explanation in siene ((se:siexplanation)).Impliations for soial siene (4.4.2). Bayes models for ausation.
Structural Equation Models Causation (4.4.2) an be inferred based on a model. For instane, inFig.  A.96 Compare to DAGs and Bayesian Networks.
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Figure  A.96: Structural equation models can help to validate assertions made about causal relationships.Determining latent variables [6].
 A.10.3. Network Flows and Related Problems

Flow in a NetworkOne appliation of graphs ( A.3.0) is to examine ow through the network. Queuing theory. Calulatingosts of routing. TraÆ on ity streets (Fig.  A.97). Prediting ongestion. Volume and ease of ow.Dynami models for optimizing ow. This also has impliations for Soial Network Analysis.

Figure  A.97: Network flow. (redraw by hand)
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Spreading ActivationBeause so many systems are modeled as graphs, we an explore the spread of ativation. The nervoussystem an be thought of a network in whih neurons (nodes) are onneted by links. When a personthinks about one onept, related onepts often seem to ome to mind. For instane, if I think aboutmy dog, I might also think about the park near my house where I walk the dog.This priming e�et ould be modeled with ativation whih spreads aross the graph. Suppose thereare six nodes onneted as in Fig.  A.98. An impulse starting from neuron a would go to both b and c.In turn, the impulse would be transmitted from those two nodes on to nodes d and e and then �nallyto node f . Suppose further that only 70% of the ativation gets through with eah hop so that 0.49 *0.70 = 0.24 and then 0.24 + 0.24 = 0.48. Many additional parameters ould be applied to this modelsuh as only on/o� neurons, a transfer funtion (inluding a maximum ativation), and speed of deayof the ativation.

ba���
@@R bb -

b -

bd���be
@@R b f time step

neuron 1 2 3

a 1.00 1.00 1.00
b 0.00 0.70 0.70
c 0.00 0.70 0.70
d 0.00 0.49 0.49
e 0.00 0.49 0.49
f 0.00 0.00 0.48

Figure  A.98: The spread of activation from neuron a to neuron f across three time steps.

 A.10.4. Agent-based ModelsUsing independent agents with loal rules to obtain a stable solution in a omplex system. This is anatural extension of soial networks (5.1.0).One strategy for this uses ellular automata. Some simulations is best done with onneted \ells".We all simulations with these \ellular automata". Computer models used for weather foreasting areextremely omplex.Agent-based simulations.One example of a ellular automata is the Game of Life [30]. (Fig.  A.99).
1. If a cell is dead and if three of its neighbors are alive then it comes alive.
2. If a cell is alive and are two or three are alive, it stays alive.
3. Otherwise, a cell dies or remains dead.

gg
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Figure  A.99: Rules for the Game of Life (top) and an example of its use. The filled circles are newly born.Arti�ial life models are arti�ial systems that behave in a fashion similar to the organisms. Randommutation and natural seletion are elegant means by whih individual organisms, speies, and eosys-tems interat to produe strutured hange at all levels and, typially, inreasing omplexity. The �eld



 A.11. Learning Mechanisms and Machine Learning 547of arti�ial life uses these same priniples to design \environments" in whih programs interat to pro-due hange in themselves and the environment itself. This is an example of yberneti evolutionarymodeling.Computer viruses as a form of arti�ial life.AxelrodCellular automata an be used to take the modeling of living organisms more literally, \arti�ial life".Analysis of biologial proesses (Fig.  A.100).
Figure  A.100: An example of artificial life. (check permission)Swarm Intelligene.Self-organizing systems.

 A.11. Learning Mechanisms and Machine LearningWe have already explored learning in several plaes. For instane, we have onsidered human learning
(4.3.5) and other adaptive systems. Cognition and learning (4.3.5). By \mahine learning" we meanalgorithmi learning. Simple ategorization is sometimes onsidered learning; however, here the fousis on learning in whih an entirely new representation is developed. In most ases, the mahine learningalgorithm is trained in one phase and its performane is tested in a seond phase. Generally need largedatasets for statistial approahes to linguistis. Generalization. Over-learning.
 A.11.1. Learning MechanismsWe have learning proesses in many plaes. Learning as taking advie. Coahing.We briey desribed human learning earlier (4.3.5); we an look more losely at learning. Aording toa behaviorist de�nition, human learning an only be demonstrated as a hange in behavior sine wean never be sure what representations people use.Types of learning an be based on the onditions in whih they our. \Learning by doing" or \Learningby observation" Another strategy for disussing learning is to fous on hanges in representation.unsupervised and supervised. There are many possible appliations suh as grammar indution orlearning how to reognizing speeh ats. Furthermore, mahine learning an be applied to adaptiveinterfaes.For human learning, we annot know in detail how human learning ours by inspetion develop amodel for it (4.3.5). However, we may program a omputer to do simple learning.Reinforement learning. Some tasks suh as learning language seem to involve feedbak. Learninglanguage from positive examples.Conditioning. Loud noises and bright lights have a diret physiologial impat as an \unonditionedstimulus". Other stimuli may be onditioned by assoiation with the UCS.Reetion and onsolidation seem to be important for human learning (5.11.2).Here, we will fous on unsupervised and supervised learning.In some ases, a short-ut an be learned. Chunking. Learning patterns of hekers [63].
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 A.11.2. Unsupervised Machine LearningThe lassi�ation proesses disussed earlier assumed a prede�ned ategory system. Unsupervisedlearning systems attempt to \disover" the struture of the underlying similarity of a olletion ofobjets. For instane, sets of abstrats for douments might be identi�ed. We might think of this asreating plausible ategories.Agglomerative lustering versus partitioning approahes.Classi�er.Emergent onept learning (1.1.4).

Quantitative and Hierarchical ClusteringHierarhies are partiularly e�etive for organizing information. Cluster analyses tries to �nd a hi-erarhy to �t data. A graphial presentation of the output of a hierarhial luster analysis alled a\dendrogram" (Fig.  A.101).From lustering to lassi�ation.
Vehicles

Bicycles Motorcycles Trucks Tractors Vans Cars

Figure  A.101: Dendrogram that might be obtained from a hierarchical cluster analysis on the distance between six
types of vehicles. Ideally, the clustering will end up with cleanly separated categories.

Qualitative Clustering and Decision TreesWhile the most ommon type of lustering is qualitative, other lustering tehniques have been proposedwhih are based on quantitative attributes. Deision trees were introdued earlier (3.4.1). Simple deisiontrees an be reated by hand, but more ompliated ones are better made with speialized tools. Twoof the better-known approahes for developing deision trees are Classi�ation and Regression TreeMethodology (CART) [22] and ID3 [58]. This proeeds in merging from the bottom up (Fig.  A.102).These methods work well for data sets that are linearly separable but models suh as bak-propagation
( A.11.4) are better for problems where non-linear partitions are possible.
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Figure  A.102: CART decision tree for[21] and a schematic of the partitions it makes for treatment of hospital patients.



 A.11. Learning Mechanisms and Machine Learning 549

ScalingMeasurement (9.3.0)/ Metri and non-metri measurement.Transformations.Transitivity.Multidimensional Saling (MDS). Multi-Dimensional Saling (MDS) is related to luster analysis.MDS attempts to �nd the �t of data of high dimensionality into a quantitative method whih an beused to form non-hierarhial lusters a lower-dimensional spae.
Self-Organizing Systems and MapsWhen a rystal forms, the atoms or moleules in it align themselves in highly-ordered patterns. Thisis a type of self-organizing system. Typially, these have loal units that organize into larger, moreoherent patterns. Soiety, the Web, and life itself are all generally onsidered to be self-organizingsystems. This is a type of unsupervised learning.FMRI evidene for onepts separate from language [?℄.

 A.11.3. Supervised Machine Learning: Learning Category M embership and Similar-
itySupervised learning algorithms use feedbak about the results of an ation from the environment toimprove performane. Beause lassi�ation is so ubiquitous, we often think of learning as improvingthe quality of lassi�ation. Supervised learning requires a representation to be updated so that thenext time the behavior is emitted, it is done better.This is sometimes alled learning by trial and error. From design to requirements.Ative learning. A proess of improving ategorization. For instane, we might selet the optimaltraining set.Feedbak an be either positive or negative. Instrumental learning is learning whih helps a person toaomplish some goal.The proedures also di�er in their representation. This setion fouses on neural networks, but otherwell-known supervised learning proedures inlude geneti algorithms ( A.11.6), Hidden Markov Models
( A.5.5), and Bayesian learning ( A.8.2).For instane, text ategorization (10.6.1) might use Bayesian tehniques.Issues for Supervised Learning. How muh training? How good is generalization. Transfer (4.3.5).Classi�ers.Supervised algorithms generally require several training yles. By gradually improving the model, thealgorithm may be able to perform better on later tasks. This is a proess known as \hill limbing". Notevery task is amenable to every supervised learning algorithm. For instane, if the proess of graduallyimproving the weights reahes a loal minimum whih the algorithm annot pass to reah the globalminimum.Supervised learning algorithms use feedbak. Some algorithms will not neessarily onverge and showan improvement. Measures of learning inlude generalization to new situations. Another problem isover-generalization, whih is learning about the details of a spei� training set and missing e�etivegeneralization.Training strategies. Training the network. Suessive approximations and learning.When there is a omplex model, This is known as \redit assignment". Sometimes, it may be diÆult
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Figure  A.103: For some types of predictions, it is helpful to categorize the input values but in other cases, using
numerical values without categorization is more effective.

 A.11.4. Learning in Neural NetworksNeural networks may be thought of as a style of omputation. Some approahes to learning are modeledloosely on biologial systems that show learning.Neural networks are omputational models whih an be applied to learning algorithm in whih theomputation and representation are distributed aross interonneted nodes. Neural networks areloosely modeled on neurons in the nervous system. Eah neuron is a very simple proessing unit.Typially, eah neuron is ative and makes a ontribution. Thus, the omputation is parallel andemergent. Neural networks are numeri and do not expliitly model symbols and onepts. Thus, theyprovide an alternative to symboli proessing models. It remains unlear whether these system anlearn to manipulate symbols.Neural nets and pattern reognition. Modeling the responses of onversational agents. Neural networksare used in many ways inluding lassi�ation. This an be used in general data mining (9.6.5).
Figure  A.104: Distributed representations. (redraw)

Learning Different Types of Representations

Overview of Neural NetworksThe basi neural network model is omposed of neurons onneted by ativation pathways. Eahneuron ombines the inputs from the ativation paths and applies a transfer funtion to determine howmuh ativation will be presented. The neural networks an learn representations that haraterize thepatterns of inputs they have reeived.Most retrieval systems employ indiret indexing terms to point to the ontent. An alternative is tohave the ontent serve as its own index. Content-addressable memories.\Neurons that �re together wire together." Typially, information is represented in the neural net-works by the weights and ativation algorithms. The representations developed by neural networks aredistributed and diÆult to examine. They are an exellent example of non-symboli proessing. How-ever, neural networks have been ritiized for not being able to yield explanations for how they reahdeisions. More often, supervised learning algorithms gradually hange the weights. Neural networkssupport assoiative learning (4.3.5). A simple assumption, whih is known as Hebbian neurons, states



 A.11. Learning Mechanisms and Machine Learning 551that when two neurons are both ative at the same time (i.e., assoiated), then the strength of the linkbetween them is inreased [37] (Fig.  A.105).
∆−~ - n ∆−n - ~ ∆+~ - ~

Figure  A.105: According to the Hebbian learning model the weight, or strength of association, between two neurons
should be increased (∆+). when the neurons are reacting the same way. That is, when they are both ON (filled
circles) (left). If they are reacting differently (center and right), the strength of the association between them is
decremented (∆−).

Back-propagation AlgorithmTo demonstrate even simple reasoning, a learning system should be able to at least learn basi Booleanoperations. The Boolean XOR is similar to the Boolean operations desribed earlier (3.9.2). The XORwas originally believed not to be learnable by neural networks. The bak-propagation algorithm [61]beame partiularly well-known when it was demonstrated that it ould learn the XOR logi funtion(Fig. 3.58). This is a type of non-linear regression.There are many ways olletions of neurons may be onneted. This is the foundation for the repre-sentation. Fig.  A.106 shows a simple three-layer neural network. The input values are shown by theweights of the links, whih onnet them to the hidden-layer neurons. This is, essentially, a bottom-upproess (10.1.5). The three-layer model is partiularly e�etive for data redution in whih the numberof hidden units is small ompared to the number of inputs or outputs.The basi idea is that the weights are updated so the network is more likely to produe the desiredresult after the update. Eah training trial has two phases. The forward-propagation follows a typeof spreading ativation network ( A.10.3). However, the basi spreading ativation approah is adaptedwith the inlusion of bias units, negative weights, and synapses with transfer funtions (Fig.  A.106).The level of ativation on the hidden layer is determined by a simple formula whih integrates theativation from the inputs. The same proess is repeated starting with the hidden units to obtain theativation on the output. For a network whih has already been trained, the output values shouldmath the targets.
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layer neurons activation activation activation activation

input left 0.0 1.0 0.0 1.0
right 0.0 0.0 1.0 0.0

hidden left (0.1) 0.0 (0.6) 0.8 (-0.4) 0.2 (0.1) 0.0
right (0.1) 0.0 (-0.4) 0.2 (0.6) 0.8 (0.1) 0.0

output (0.4) 0.2 (0.8) 0.9 (0.8) 0.9 (0.4) 0.2

target 0.0 1.0 1.0 0.0

Figure  A.106: Forward-propagation in three-layer neural network. Note that the weights (shown in parentheses
in the schematic) are preset to value which solve the XOR. The activation spreads from the input layer through
the hidden (middle) layer to the output layer. Activations are collected at synapses, which are shown by horizontal
lines. A transformation is applied to the synapse activation shown in parentheses in the table to produce the neuron
activation.For the neural network to demonstrated learning (i.e., for the weights to be updated) we an use thedi�erene from the target along with the strength of the ativation on eah weight by a small amount.These orretions are made on the weights from the outputs bak to hidden units and then on theweights bak to the input units.
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 A.11.5. Deep LearningFeature extration.
 A.11.6. Genetic AlgorithmsDNA is the representation for adaptive biologial systems. In the biologial systems, learning is a-omplished from mutation followed by natural seletion. Sine we know that biologial speies adaptthrough evolution, it may be possible to imitate them. This proess an be simulated with binarystrings representing a gene pool (Fig.  A.107). Changes are introdued by mutation of the binary string.\Cross-overs" are a type of mutation in whih segments of two strings are swapped (Fig.  A.108). Nat-ural seletion an then be simulated by seleting those mutated segments that provide better responsesto the problem the initial patterns. mutation

?natural seletion
?reprodution of survivors -

6
�

Figure  A.107: Steps in evolution are emulated by genetic algorithms.

Initial Ending
Patterns Patterns

1 1 | 0 0 0 1 1 | 0 1 1
1 0 | 0 1 1 1 0 | 0 0 0

Figure  A.108: In genetic algorithms, new bit patterns may evolve by a process of “mutation” and “natural selection”.
An example of crossover from a genetic algorithm is shown; the last three bits have been flipped.

 A.12. Biological Basis of Human and Social Information Pro cess-
ing
 A.12.1. Biological Bases of Social BehaviorSoial brain. Aggression. Empathy.Animal models for soial behavior. Fig. ??.

Figure  A.109: Chimp grooming. (check permission)

 A.12.2. Brain ScienceWhy brain siene is relevant for information siene.While we have generally foused on the use of information rather than the underlying infrastruture.For human information proessing we have onsidered ognition (4.3.0) but not the brain. Here, weinvestigate that. Neurology. Cognition systems. Hierarhial sensory proessing. Metaboli ost forognition.Senario visualization [?℄.Plastiity. Language learning up to a ertain age. Sensory and brain development.
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Figure  A.110: Basic brain structures.Cognitive metaboli osts. Metaboli osts in multitasking. Motor behavior (4.2.4).Perhaps some overlap of brain inputs helps to give people the distintive apabilities[64]. Fae blindness.
Spatial BrainSpatial brain. Grid ells for loation.
Brain StructureModularity of brain strutures.Left-handedness.synapses > neurons > network > maps > nervous systems
Macro Structure Regions for vision, emotions, motor ontrol.There is some ross-talk among neurons in the brain. Priming. Even apparently ross-talk betweenstrutures. Holding a hot up of o�ee a�ets rating of the warmth of other people.The human brain is vastly di�erent from silion omputers and their programming. The brain is amass of neurons whih are inter-onneted by an even larger number of axons.The physial struture of the brain shows a lot of speialization. Right brain versus left brain [?℄.identifying brain funtion of di�erent brain hemispheres. Left brain tends to be logial and the rightbrain tends to be intuitive.Hippoampus. Spatial neurons.Soial brain. Fae reognition. Empathy.Fear and aggression. Emotion from the amygdale.

Figure  A.111: Hubel and Wisel neurons. (check permission)Mirror neurons and empathy.Motor behavior (4.2.4) and sensation (Fig.  A.112).Miro-strutures. Mirror neurons.Brain siene and language learning. Broa and Wernike's Areas are important in language.
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Figure  A.112: Brain motor behavior.

Neurons Neurons.Synapses are adaptive. Neurotransmitters. Dopamine.The ability of the human brain to develop new representations seems to hange with growth.
Brain FunctionFurthermore, the funtions of many regions of the brain an be learly identi�ed. Right brain versusleft brain [11]. The left hemisphere of the brain is generally assoiated with speeh. One part, Broa'sArea, is involved in speeh and language prodution. While another part, Wernike's Area, is involvedin speeh understanding. Moreover, these may be related to language diÆulties suh as dyslexia (4.9.3).Unreliable omponents (i.e., neurons) produe generally oherent thinking.Visual features and visual searh.Magneti resonane imaging (MRI) fMRI whih measures inreased blood ow for di�erent ognitiveativities.

Figure  A.113: Functional magnetic resonance imaging (FMRI) has proven very useful for determining which parts
of the brain are most involved in high level cognitive processing. (check permission).Some of these studies have revealed speialized strutures of the brain. Regions of the visual ortexspeialized for faes, plaes, bodies [41] (Fig.  A.114).Hippoampus and episodi memory.Expert hess players versus novies show ativity in di�erent regions of the brain when playing hess.Neural plastiity.Mental imagery and vision.Pain.Musi [48].Category-spei� ells. Grandmother ells. Grammar ells. Cells whih respond to stimuli whih havebeen attended to a lot.Consiousness and intentional behavior.
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Figure  A.114: Face detection cells vs frequent item cells.[41]. (check permission)Neural network models ( A.11.4) and broader modeling of neural iruits.Modular system with lots of feedbak [70].Sleep and memory onsolidation [7].Multiple memories. Amnesia diÆulties of forming long-term memories.
 A.12.3. Affect and Emotion

Figure  A.115: Typical time-course for physiological arousal. A loud noise may cause an “fight or flight” reaction”.
(redraw)Oxytoin.

AddictionMultiple ompeting fores. Opponent proess model of addition. Pleasure and stress.
Figure  A.116: Model for addiction.

 A.12.4. LearningAs with the omplexity of neurons themselves, there are many mehanisms for learning. There is bothplastiity and wired-in learning. Some studies show that neural organization of information ontinuesas late as 18 years of age.
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 A.12.5. Brain SimulationMahine learning ( A.11.0). .
Neural Prosthetics Neural prosthetis.Neuro-tehnologies.Moral judgment,

 A.13. Encryption and CryptographyEnryption is a foundation for information seurity and appliations suh as privay (8.3.1) and eom-mere (8.12.5). We briey introdued enryption earlier ( A.13.1); here we extend that. These algorithmsare triggered by a \key" whih is a large number that sets the algorithm. Many of the most robustenryption protools are based on the diÆulty of fatoring ombinations of prime numbers. Amountof omutation is a onsideration for routine use. Brute fore attak to break enryption.
Figure  A.117: Bletchley house: The site of British code breaking work during World War II. (check permission)Hidden Markov models ( A.5.5) an be useful for ode-breaking. Spei�ally, they an help to identifynon-random proesses.

 A.13.1. EncryptionEnryption is a base tehnology whih an failitate seurity. Enryption srambles data, making itdiÆult to interept and read. Enryption supports for information assurane. When important dataan be easily and illegitimately opied, and other information an be as easily forged, it is natural tolook for tehnologial solutions to the problems raised by suh ativities. For all pratial purposes,modern enryption algorithms annot be broken. In a sort of arms rae, sophistiated tehnologies forproteting information often produe sophistiated attaks by people seeking to breah those safeguards.The enryption algorithms may be embedded in a servie to aid in information seurity.
Secret CodesCodes and enryption protet information from being seen by people who do not know the key. Someof the simplest odes are \substitution odes" in whih one letter is replaed by other letters. Theode shown in Fig.  A.118 is formed by shifting eah letter 13 positions in the alphabet. These rotatedletters are substituted for the original letters. We might easily guess that the rotated letters v, b, anda are among the most ommon in the language sine they appear twie in the oded word. In fat, wesee that these letters represent i, o, and n. With suÆient samples of text, suh simple odes are easilybroken.

e t a o i n s r h l d c u m f p g w y b v k x j q z

Figure  A.118: Rank order of the letters in the English (Latin) alphabet based on their frequency.

original i n f o r m a t i o n

ROT13 coded v a s b e z n g v b a

Figure  A.119: The letters of the word in the first line are shifted by 13 letter positions (ROT13) in the second line.



 A.13. Encryption and Cryptography 557

Single-Key (Symmetric) EncryptionModern enryption shemes are muh more diÆult to break. One family of enryptions is symmetri;that is, the same algorithm key an enrypt and derypt these odes. The Data Enryption Stan-dards (DES) ( A.13.2) is alled \symmetri" beause the enryption and deryption keys are the same(Fig.  A.120). Without knowing the key, the only pratial way to break these odes is by testing allpossible values for the keys. Whether, and how quikly, the algorithm an be broken depends on thesize of the fators and the speed of the omputers trying to break it.
Figure  A.120: Symmetric-key encryption uses the same key for encryption and decryption.

Public-Key (Asymmetric) Encryption and the Public Key Infrastructure (PKI)The publi-key algorithm uses two asymmetri keys. One of the keys enrypts messages while theseond derypts them. The details of the algorithm are given in  A.13.3. Most often, the publi keyalgorithm is used to prove that information is from an authenti soure. It ould be a digital signatureor a stamp to validate a Web site. In this type of appliation, the enryption key is kept seret and thederyption key is made freely available. If a Web site is able to be read using the deryption key theywe an be on�dent it was enrypted by the holder of the private key. It is also possible to publishthe enryption key and keep the deryption key seret. In this latter approah, anyone an enrypt amessage and send it to the holder of the deryption key, but only that person an read the message.Signing erti�ates.
Figure  A.121: Public-key encryption is asymmetric with one key to encrypt (write) the file and a second key to read
it.Beyond enryption algorithms, an infrastruture is needed to allow distributed omputers to exhangeinformation seurely. A erti�ation authority guarantees that a publi key atually belongs to a ertainorganization (Fig.  A.122). Spei�ally, the erti�ation authority provides an eletroni erti�atewhih an validate a publi key (Fig.  A.123); it also sets time limits during whih a erti�ate maybe ative. It provides its own enryption and a temporal window in whih it an be used. Messageauthorization ode.

Key Management and Encryption without Transmitting KeysProedures for seure management of keys remains diÆult. The key needs to be delivered to theorret reipient. If the keys are distributed by an inseure hannel, they ould be stolen. Beause ofthe diÆulty of key management, a proedure that reates an enrypted hannel without transmittingkeys an be useful. The DiÆe-Hellman proedure ( A.13.2) an be used to exhange information seurelybeause the keys are never transmitted in the open. This is the priniple behind SSH.
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Sequence Description

0. Certification authority sends private key to HTTP server. This is often
done when server site is set up.

1. User contacts merchant’s HTTP server.
2. HTTP server suggests switching to secure server.
3. User asks for merchant’s public key from certification authority.
4. Certification authority replies with merchant’s public key.
5. User merchant’s contacts secure server.
6. Secure server responds and user can decrypt page with public key.

Figure  A.122: The steps in authentication with a certification authority. (FIG)

Field Description

Version Version
Serial number Unique serial number
Signature Algorithm used to sign certificate
Issuer Trusted entity
Validity Dates for which the certificate is valid
Subject Name of the certificate holder
SubjectPublicKeyInfo Algorithms for which the certificate is valid
IssuerUniqueID ID of trusted entity
SubjectUniqueID ID of certificate holder
Extensions Extensions

Figure  A.123: The main fields of an electronic certificate (adapted from[3]).

Digital Signatures and Digital Time-StampsHashing is a proedure generally produes an index number from omplex number. This unique numberan be used as a digital signature. Time-stamps are an appliation of digital signatures whih desribewhen an information resoure was reated. An inventor might want to be able to verify the date onwhih his or her invention was reated, or a hospital may want to on�rm the time and date when anX-ray of a patient was taken. Seure hashing, whih is similar to enryption, generates a unique hashode for the objet; this an be widely published so that its time annot be disputed. Simply inludinga digitized time in an ordinary enryption is not proof beause that time-stamp ould have been forgedbefore the enryption. This an be a tehnique for authentiation.A time-stamp system is based on publishing a rolling hash ode (Fig.  A.124). Provides trust (5.2.3).Content enrypted with that key must have been in that sequene based on a reonstrution of thesequene of values. The result is published in a newspaper lassi�ed advertisement. Beause thenewspaper is dated and widely distributed, the time stamps must have been generated on that date.
Encryption PoliciesEnryption attempts to sramble messages so thoroughly that they annot be deoded exept by some-one with the key. This tehnology may be abused; it ould enable riminals to ommuniate withoutany possibility of detetion. The U.S. government has attempted to ontrol the distribution of enryp-
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Figure  A.124: Steps in time-stamping digital objects. The documents are hashed and the hashes are stored in a
list. This list is hashed and the resulting hash code is published in a newspaper. As with any public-key system, the
list can be read, but the time-stamp agency can prove that only they could have produced that hash. (FIG)tion tehnology by prohibiting its ommerial export. Critis of this poliy argue that the enryptiontehnology should be freely available. However, that e�ort has not been generally suessful and thedebate has shifted to whether there should be a way for government oÆials to over-ride the enryp-tion in some ases. Privay advoates disagree with the inlusion of an over-ride apability. Currentenryption tehnology is so good that for all pratial purposes it annot be broken. The most seriousproblems with redit ard authorization on the Web have not been with the algorithms, but with theontrol of derypted ard numbers that were stored in a database.

 A.13.2. Digital Encryption Standard (DES)DES is the basi proedure for symmetri key enryption. It proeeds through a series of permutation,rotation, using the Boolean XOR operator (3.9.2). This is fairly fast and is reversible, but an be diÆultto rak depending on the number of bits in the XOR. A shemati of the steps is shown in Fig.  A.117.
1 10111000 00101110
2 - -
3 - -

Figure  A.125: Simplified version of DES using eight bits, rotation, and XOR.

 A.13.3. Public-Key Encryption AlgorithmAppliations of publi-key enryption were desribed earlier ( A.13.1). Here we explain the RSA publi-key enryption algorithm following[69]. This is sometimes alled a \trapdoor" or \knapsak" algorithmbeause it is easy to go in one diretion but diÆult to go in the other diretion. This is espeially truefor very large values. Begin by seleting two prime numbers, p and q and an enryption key, e. Thosevalues an be used to derive the deryption key, d (Eq.  A.20).
(d ∗ e) mod ((p − 1)(q − 1)) = 1 ( A.20)A message, M , an be enrypted to a ipher, C, with Eq.  A.21. When we want private enryption ofmessages, e and p ∗ q together an be used as a \private key".

C = M e mod (p ∗ q) ( A.21)
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M = Cd mod (p ∗ q) ( A.22)As an example, if we took two prime numbers, p = 11 and q = 3 and we selet e = 13. d an bealulated from Eq.  A.20.3

(d ∗ 13) mod((11 − 1)(3 − 1)) = (d ∗ 13) mod (20) = 1 ( A.23)

d = 17 ( A.24)For instane, this might be the ASCII ode a text message. Now, imagine that we want to transmitthe number \9" as a message, M . The ipher an be alulated with Eq.  A.21 along with the valuesof e. 4

C = 913mod(33) ( A.26)

C = 15 ( A.27)The reeiver an then deode the ipher using the deryption key, d and the value of p∗ q and Eq.  A.22to reover the value of the message, M .
M = 1517mod(33) ( A.28)

M = 9 ( A.29)Beause the publi-key alulations are omputationally expensive, an entire message is typially notenrypted with this tehnique. Rather, the DES algorithm may be used to enrypt the message andonly the DES key is enrypted with the publi key algorithm.
 A.13.4. Public-Key Infrastructure (PKI)
Certification Authorities and Electronic Certificates Fig.  A.123 shows the steps required by a erti�ationauthority.

- - -

Figure  A.126: Stream cipher.

 A.13.5. Cryptographic ProtocolsEnryption an be the foundation of low-level protools. For instane, employing middleware to provideanonymity.The enryption proedures just desribed an be applied in many ways, Cryptographi that managesdi�erent types of interation. Determining the highest salary among a group of people without beingable to identify who has it.Enryption is possible solution to seurity rather than a system solution.\Pseudonym" systems.
3For large values, this calculation can be simplified with Euclid’s theorem.
4Note that even for small values these exponents will overflow most computers. The computation can be made more tractable

by decomposing the exponents. For instance:

913mod(33) = [96mod(33) ∗ 95mod(33) ∗ 92mod(33)] mod(33) ( A.25)



 A.14. Servers and Networks 561Compared to redit ards, ash provides anonymity beause there is no eletroni trail.Seure multiparty ommuniations. Proteting privay (8.3.1) and data mining. A bank an guaranteea payment without the soure of the funds being diretly identi�ed. This provides about the same levelof anonymity as ash (Fig.  A.127) [23].
Figure  A.127: An example of a cryptographic protocol for ecommerce. In the top panel the user requests a
certificate from the bank for a fixed amount. In the bottom panel, the certificate is given to a merchant. (adapted
from[23]). (redraw)

 A.14. Servers and NetworksWe have seen range servers from databases, to Web sites, to repository servers. In middleware (7.7.1). Aserver is a networked omputer that speializes in delivering data and information. Network seurity.Peer-to-peer.This does not inlude the human or organizational issues.We have touhed on servers in many setions.
 A.14.1. Database SystemsDatabase management systems (DBMS) ((se:dbmsbasi)). Indeed, these may be federated systems inwhih ase they would are distributed databasemanagement systems (DDBMS).While we emphasized databases for retrieving information, many databases also need to store informa-tion reeived from users.Unitary transations. ACID: Atomi, Consisteny, Isolation, DurabilityCRUD: Create, Read, Update, Delete.

Transaction ManagementNested and distributed transations.Database transations. Lok to make sure the annot be hanged by another proess. Prevent onitsof two disk ativities at the same time.Several transations may our simultaneously. Conurreny ontrol. Suppose you are online andbrowsing for an airplane tiket. You would be very annoyed if you have piked a ight and seat butbefore you omplete the purhase somebody else slips in and purhases that seat. This problem anbe helped by reating a lok on the seat one you request it. While the lok in e�et nobody else anselet that seat.Avoid onits and deadloks.Rollbak points.Chek-in and hek-out to make sure the do not overlap.Two-phase loking (Fig.  A.128). Growing phase and shrinking phase. Loking phase and release phase.
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Figure  A.128: Two-phase locking. (redraw)

Network DatabasesThe Web is highly distributed and there are no guarantees as to information being available.A variety of systems have been developed for managing the oordination of the network infrastruture.
Placement in the Network There is often a tradeo� between disk storage and network usage. Frequentlyaessed ontent an be made available. Mirroring.[??]

 A.14.2. Web ServersFrom Web servers to repository servers and ontent management systems (CMS) (7.8.0).
Web Server LogsServers reord a great deal of information about eah transation (Fig. ??).Tools for analysis and improved advertising. Able to �nd IP addresses.

208.219.77.29 - - [17/Aug/1999:11:57:58 -0400] “GET /robots.txt HTTP/1.1” 404 207
208.219.77.29 - - [17/Aug/1999:12:01:38 -0400] “GET /snews/ HTTP/1.1” 200 822
208.219.77.29 - - [17/Aug/1999:13:59:46 -0400] “GET /snews/ HTTP/1.1” 200 822
208.219.77.29 - - [17/Aug/1999:14:24:38 -0400] “GET /snews/browse.html HTTP/1.1” 200 665
208.219.77.29 - - [17/Aug/1999:14:36:24 -0400] “GET /snews/form.html HTTP/1.1” 200 1080
208.219.77.29 - - [17/Aug/1999:16:16:51 -0400] “GET /snews/form.html HTTP/1.1” 200 1080
208.219.77.29 - - [17/Aug/1999:16:24:29 -0400] “GET /snews/MDUD/pageImages.html HTTP/1.1” 200 856
208.219.77.29 - - [17/Aug/1999:19:26:07 -0400] “HEAD /snews/MDUD/pageImages.html HTTP/1.1” 200 856
208.219.77.29 - - [17/Aug/1999:19:28:10 -0400] “HEAD /snews/NYBE/pageImages.html HTTP/1.1” 200 425

Figure  A.129: Web Server log files. Each of part of the Web page to be retrieval such as individual figures is
recorded separately.Anonymizer.omCahing of Web pages depends on Web usage patterns. It an be on the browser or in the networks;for example at a proxy server.

 A.14.3. Link Resolution for Digital LibrariesSome links may be ontext sensitive. For instane, links for an appropriate opy may depend onontrats. Links in the loal ontext.One strategy for organizing virtual or distributed olletions employs \Digital Objet Identi�ers"(DOIs). These unique odes are omposed of a pre�x that desribe the diretory and publisher, and asuÆx that assigns the objet a ode of the publisher's hoosing.Manage aess rights. Digital objet identi�ers (DOIs) ( A.14.3).



 A.15. Transmission and Networking 563The \appropriate opy" linking servie [55] uses the Handles protool [40] ( A.14.3). It is an \appropriateopy" in the sense that a ontrast or liense exists for aessing that ontent. This is also termed\ontext-sensitive linking" (Fig.  A.130). From DOIs ( A.14.3).

Figure  A.130: Context-sensitive linking[12]. (check permission)

 A.15. Transmission and NetworkingIt is not the intention of this text to provide a general ourse on transmission; rather, we fous ondata transmission. Ideally, transmission should be fast, exible, and real-time. This an greatly a�etmultimedia presentations.

Figure  A.131: Telephone lines in rural Virginia (from LC)Distributed protools.
 A.15.1. Data TransmissionData has to get from one plae to another. Transmission osts are falling rapidly and inreasing inportability.Digital versus analog. Asymmetri links. The bak hannel does not neessarily have to be as highbandwidth. Symmetri network, have soures equal to sinks.

Broadcast and WirelessThere are many tehnologies and many ways of delivering ontent. In a broadast transmission, anantenna sends signals into the air; broadast is widely used by traditional analog radio and videostations. Broadast normally sends signals to anyone with an appropriate reeiver.
Spectrum The eletromagneti spetrum inludes radio frequenies used for ommuniation servie.Di�erent parts of the spetrum are useful for di�erent appliations. These are liensed to avoid onitsin ommuniation. This liensing regulates, for instane, the number of broadast television stations



564 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13in a region. In the U.S. permission in alloated by the Federal Communiations Commission (FCC).In some ases, the spetrum is quite valuable and it is generally autioned to the highest as a publiresoure. Di�erent parts of the spetrum are suitable for di�erent appliations. Fig.  A.132 shows howthe spetrum is divided for ommuniations.

Figure  A.132: Chart showing the allocation of electromagnetic spectrum for communication in the U.S. (left) and a
detail of the chart (right)[53].

Wireless Wireless transmission allows for portable, and hene nearly ubiquitous, dissemination ofinformation. When broadast is used for personal ommuniations. Analog versus digital radio versusIR transmission mirowave.Who owns wireless spetrum. Is it a publi resoure. Commons wireless networks. Sharing bandwidth.For instane, garage door openers share a spetrum with �ghter airraft.Wireless and mobility of servies.This has the potential to make highly portable servies.Cellular { what is a ell. Miroells. Fig. ?? shows how ells work in a ellular telephony system.Coordination between ells.
Figure  A.133: Cellular telephony.Multimedia over wireless poses substantial bandwidth diÆulties.

Spread Spectrum With traditional radio, the broadast is on a single frequeny. However, it is alsopossible to spread information aross di�erent wavelengths of the spetrum (Fig.  A.134) [?℄.
Satellite Relay Satellites provide ommuniation overage in remote loations. Several generations ofsatellites have been deployed. One important di�erene between them is their orbits. \Remote sensing"satellites. There are two fundamental types of ommuniations satellites, those in GeosynhronousEarth Orbits (GEOs) and in Low Earth Orbit (LEOs). The GEOs stay in one position above theearth. GEOs at X KM (24K miles). footprints. LEOs are not geosynhronous. Several sets of LEOssuh as Teledesi and Iridium are being deployed. Delay in satellite ommuniations makes two-wayvoie links diÆult.
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Figure  A.134: In spread-spectrum communications, parts of a message are communicated on different wave-
lengths. Because different wavelengths are used, the message can be robust and difficult to intercept.

Location TechnologiesFor games and for mobile servies. Coupon alert during shopping,Providing better bus servies. How to optimize bus servies for times. Autioning spaes (perhaps bybetter pries.Managing loation with trado� of bandwidth and energy use.Loation-related searh. Walking routes by mining previous trajetories. Finding a stationary objet.
Global Positioning System (GPS) Fig.  A.135 illustrates how a GPS an alulate the position of anobjet on earth based on the di�erene in the timing of signals reeived from the two satellites. Betterresolution, inluding 3-D position, an be obtained by using the signals from three or four satellites.

Figure  A.135: Global Positioning System (GPS) position is obtained from satellite positions.

Indoor Location Properties of waves. Wave propogation method of loation.Signal strength-maps. Know harateristis of of the signals in a building. Problem of people walkingaround buildings. Very ostly and time-onsuming. Privay problems in all this monitoring.
Navigation Based Position Accuracy Navigation through spae. Inertial navigation systems (INS) Canuse navigation for Compass, Aelerometer, Gyrosope.Coordinating loations with amera or image proessing.Understanding the meaningfulness of behavior. Judging a person's intentionality for their motion.
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 A.15.2. Digital NetworkingDigital networking makes distributed information systems possible. The information revolution dependson getting the information there. Internet versus the Web.[??]Error ontrol in networks.
Packets and RoutingA distributed network is designed an be robust to failure. In a entralized network onsider whathappens to a failure at the entral node.Pakets are really sets of eletrial pulses.SniÆng.
Local Area Networks (LANs) The on�guration of the network reets the Robust networks (Fig.  A.136).This is analogous to soial interation (1.2.1). How best to get from one plae to another.

b b
bb

b
............................................................................ .....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....l

l
l�

�
�

�
�
�
�
�
��B
B
B
B
B
B

Q
Q
Q
QQ

,
,
,
,,

b
b b
b

b
b b

bb
b

l
l
l
ll�

�
�
��

............................................................................ .....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....l

l
l�

�
�

Figure  A.136: Three local area networks are illustrated. In a ring (right) the packets will be sure to reach all nodes.
The other networks require routing. The distributed network should be more robust to failure than the “star” network.Ring network.

Circuits and NetworksIn traditional telephony, there is an eletrial iruit between the mouthpiee of one telephone and thereeiver of the other telephone. This disussion fouses on paket networks. A paket is a olletion ofeletrial signals that arries both header information and data. The header information desribe thedestination of the paket and the type of protool it follows.Ethernet is the most ommon paket network but many others have been proposed. Ethernet is theprimary example of CMDA (ollision networks) but inreasingly it is being adopted by wireless systems.This provides robustness, but not if saturated. Ethernet on a single network. Gigabit Ethernet,[??] VBR(Variable Bit-rate Transmission), ATM layers | physial layer, ATM layer, adaptation layer.Non-CDMA networks.
Addresses and PortsIn a iruit where several mahines are onneted, the mahines must be given addresses to distinguishthem from eah other.
Addresses and Domains Typially, networks are interonneted. To go beyond a loal network requiresgateways for routing to other networks. IP and Class B, C, D address,There are many poliy issues surrounding internet naming [?℄.
Packet ProtocolsA protool is a standard for ommuniation to ensure that a transmission goes to the right plae. Thereare the IP-level protools.[??] Servie protools, suh as http, are disussed above ((se:http)).The Internet is a harsh environment for pakets ( A.15.2). If key data is in only a few pakets andthose are lost due to ongestion, serious problems an ensue. Often an adaptation is made to network



 A.15. Transmission and Networking 567environments by dropping frames. In urrent implementation, all pakets are given equal priority.
 A.15.3. Multimedia and Hypermedia and NetworkingMultimedia networking has speial requirements. Even small delays an make a di�erene in transmis-sions, so salability is important.

Networking and Special EffectsWhere in network are speial e�ets ompleted? Reonstrut fades later loally [?℄. Real-time intera-tion.
Network-Scalable Multimedia ServicesA traditional video stream has �xed-rate bit streams. However, interative multimedia servies areoften \bursty" (Fig. ??).

 A.15.4. Audio DeliveryBeause it has lower bandwidth requirements, audio servies are easier to develop in the short termthan are video servies.Internet telephony. This an mean many things to many people. ITU H.323. The problem of ongestionalong routes an be a signi�ant fator. However, many internet telephony servies run P2P protools.The telephone is a real-time multimedia servie. Indeed, the real-time restritions are striter here thanfor delivery of audio or video; very little delay an be tolerated.Repair of audio, In many ases, audio is fairly preditable. Thus, if a paket and its data are lost agood guess an be made about how to replae it.Communiation servies suh as live telephony have very stringent network requirements. VOIP, voieover IP.
Figure  A.137: VOIP.

 A.15.5. Video DeliveryS-Video, Composite video.[??]
Video Broadcast and NetworkingVideo is not one tehnology but many. There is a fundamental distintion between analog and digitaltransmission. You are probably most familiar with analog video, whih is broadast or delivered byable to your television. Most new video tehnologies are digital. Digital video allows pitures to beomputer-proessed. Speial e�ets an be generated and frame rates and ompression an be easilyontrolled. Digital video generally requires very large amounts of data ompared to images and evenaudio. Low-level networking issues and video hardware are disussed in  A.18.0.Digital video also allows for delivery of video by paket networks. In the near future, broadast qualityvideo is not likely to be arried on the Internet beause of the large amounts of data involved. Asgigabit networks and satellite delivery are more widely deployed, this may beome ommon.
Analog Broadcast VideoBroadast television started as blak-and-white.As olor television was developed, it was neessary to allow the large number of existing blak-and-whitetelevision sets to be able to reeived programs transmitted in olor and to allow olor television sets



568 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13to reeive blak-and-white programs. Thus, the olor signal was superimposed on the blak-and-whitesignal. SMPTE (Soiety of Motion Piture and Television Engineers) standards were established to dothis, and to handle the speial ases of olor superimposedon an analog broadast signal.There are two widely used broadast formats: NTSC and CECAM-PAL. NTSC is used in NorthAmeria while CECAM-PAL is used in most of the rest of the world.High-de�nition television (HDTV) is a widely disussed standard.
Digital VideoThere are many ways of transmitting data by wire. In addition, digital video an be proessed in otherways. Video on demand is one servie that an be provided with this tehnology.Digital video is delivered over the network or by wireless. Digital Video Broadast (DVB) an be ofhigher quality than analog. The ATSC (Advaned Television Standards Committee) establishes riteriafor DVB.In streaming video, frames are sent and viewed onseutively as they arrive. Streaming may be moreeÆient; viewing of a video an start sooner beause one does not have to wait for an entire �le todownload. One limitation with streaming is that there may be ongestion in the network and someframes may arrive late or not at all. A seond limitation is that streaming video is usually uniast,that is, only one lient is onneted to the server at one time. Multiasting allows many people to beserved by a single a video soure while minimizing network load.Combining video with many other servies.Multiasting may also be used for other servies suh as distribution of audio and games.

 A.16. The InternetThe Internet is the international olletion of paket networks whih implements the Internet Protool(IP). It was designed as a distributed network to promote robustness and survivability. During the1980's private networks grew but many of these used proprietary protools and were interonneted.
The Physical Internet While we have foused on protools, but, of ourse, the Internet is made up ofommuniation lines and routers. Avoiding ongestion ( A.16.0). Map of the InternetWhile it is relatively easy to provide high speed network onnetivity on major trunks. Feeding thatonnetivity out to individual loations. Last-mile problem.
Layers of Service Layering is a good strategy for managing omplexity (7.7.1). Fig.  A.138 showsthe ISO Open System Interonnet (OSI) layers for servies. Layering for separating the omplexity

(7.7.1). This spei�ation is foused on the network and not on the servies. Ideally, the layers shouldbe independent of eah other. Referene model for how a network should be built.
Layer Description Example

1 Application

2 Presentation

3 Session Circuit connection

4 Transport TCP

5 Network IP

6 Data Link binary data

7 Physical cables

Figure  A.138: The ISO OSI 7-layer model. Each layer is designed to operate separately from the others.
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 A.16.1. Internet Economics and PoliciesInformation networks are embedded into the soial fabri.Eonomis (8.7.0). Network eonomis.Moving omputing or moving data.Pakets and network eonomis [76]. Impratiality of harging per paket. Peering.

Figure  A.139: Internet peering. (redraw) (check permission)Boundary gateway protool (BGP).Internet struture is desribed in ( A.16.0). The at-rate business model was instrumental in generatingbusiness. Business models for the Internet. Measuring traÆ. Priing. Net neutrality. Dark networks.
 A.16.2. Regulating the InternetControlling Internet ativities by national laws [33].Government regulation. Cross-border regulation.

Real-Time Services on the InternetThe Internet transmits pakets but they may be delayed or destroyed. For instane, if too many paketsarrive at a swith at a given time, the bu�er may overow and some of the pakets might be disarded.Even if they are not disarded, they may be delayed.For email, these delays are not signi�ant but for real-time interation, only minimal delays an betolerated. While the Web is mostly text and images, as we have seen throughout this book, multimediais onstantly inreasing.A variety of new Internet servies have been proposed, inluding IPv6. Charging and wireless.Bu�ering of transmitted information.[??]
Real-Time Protocols A variety of protools for real-time IP servies have been proposed. UDP paketsare sometimes preferred for multimedia beause of the speed.Robust IP Multiast.
Quality of Service Guarantees The Internet is highly distributed and has many bottleneks.Quality of Servie (QoS) guarantees and multimedia (bloking and lateny). Requires ooperation fromrouters.
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 A.17. Computing Architectures and Operations
 A.17.1. Theory of ComputationWhat is the way to organize omponents suh as swithes and memory to do omplex omputation.Turing [74].Interative omputing [5].The basi units of a Von Neuman omputer [77]. 1. Arithmeti unit, 2. Memory 3. Control 4.Input/Output (Fig.  A.140).

Instruction space: Memory space:
x=x+1; x
z=x+y; y

z

Figure  A.140: Stored programs need both instruction-memory space and a data-memory space.

 A.17.2. Computer Programming LanguagesE�etiveness.
Machine LanguageInstrution spae and data spae.
Formal Properties of Programming LanguagesOne attribute of a programming language is the ability to express omplex material. The ability to doany type of omputation is known as being \Turing omplete".Useful for applying algorithms for ompleting ertain tasks.Formal languages (6.5.2). Parsing and ompiling,

 A.17.3. CPU ArchitecturesThe omplexity of the algorithms wired diretly into a CPU hip a�ets its size, speed, and the heat itgenerates. Thus, hip designers have two approahes.Booleans are the basis of the gates used in digital logi (Fig.  A.141). (3.9.2,  A.7.1).
Figure  A.141: Logic circuits. The OR gates and the AND gates. (redraw)A omputer may be alled on to do a wide range of alulations. When designing CPUs, there wasa tendeny introdue instrutions for and many of those omputations as possible. This resulted inso-alled Complex Instrution Set (CISC) hips.However, the CISC hips were more diÆult to manufature, were more speialized, and onsumedmore heat when operating. Thus, the hip makers deided it was better to simplify the number of



 A.17. Computing Architectures and Operations 571instrutions. This resulted in Redued Instrution Set (RISC) hips.Reon�gurable omputing.Graphis omputing. Cell proessor.
 A.17.4. Distributed Problem Solving
 A.17.5. Parallel ComputingA distributed system has several omputer proessors onneted by a network while the network on-netions are fairly fast, they are not nearly as fast interonneted systems with a shared bus. Theseentrally onneted omputers are all \parallel". There are many ways they an be inter-onneted.Fig.  A.142 shows multiple streams with rossovers. In this on�guration, the results for eah stage arepassed to all proessors ative in the seond stage. \pipeline" model.Mesh networks.Cell omputing.Coordination and omputation.Parallel algorithms.For some other problems, arbitrary exhanges between proessors (Fig.  A.143). There are severaldi�erent arhitetures.
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Figure  A.142: A parallel computer has multiple connected CPUs.
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Figure  A.143: A cube architecture allows the shortest path for communication among the nodes. We can easily
visualize a 3-D cube but it is also easy to wire nodes into higher-dimensional cube, “hypercube,” architectures.Spei� algorithms an math these arhitetures.Multiore proessors.

 A.17.6. Grid ComputingWe briey onsidered grid omputing (7.8.1).Networking, storage, and onurreny.
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Large Scale Distributed StorageDelay aross storage.BigTable.Storage resoure broker [13]. Rule spei�ation. iRODS.Peer to peer system for storage. LOCKSS Preventing groups from. Grid omputing, the storageresoure broker [14].\The SDSC Storage Resoure Broker (SRB) is lient-server middleware that provides a uniform interfaefor onneting to heterogeneous data resoures over a network and aessing repliated data sets. SRB,in onjuntion with the Metadata Catalog (MCAT), provides a way to aess data sets and resouresbased on their attributes and/or logial names rather than their names or physial loations". QUOTEMove data around the net based on luster analysis of how it is used. Importane of keeping a singlemaster opy. Data storage (Fig. ??). DiÆulty of updates.
Figure  A.144: BigTable.

 A.17.7. Models of ComputationBlakboards.Neural networks ( A.11.4).
Autonomic ComputingGet the system to optimize itself. Self-aware, self-healing [2].

 A.18. Input/Output DevicesAlthough digital proessing is inreasingly important, it is often neessary to understand the e�ets ofphysial proesses. Input/output devies.
 A.18.1. Audio DevicesTransduer for audio.[??]

MicrophonesA mirophone onverts sound in air to eletri signals. Diretional mirophones. Cone of sensitivity.
Figure  A.145: Microphone. (re-draw-K)
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SpeakersSpeakers reate pressure waves from eletrial signals; a speaker's sound box an provide resonane.Di�erent speakers are used for di�erent pithes.
Specialized Audio Processing A-to-D, Digital Signal Proessing (DSP) hips.[??]

 A.18.2. Visual and Video DevicesHow to apture and present an array of signals. Here, we briey survey several tehnologies. Digitalinema.
Printing TechnologyPaper and ink. E-Ink �gure. (Fig.  A.146).

Figure  A.146: Black-and-white balls with different electrostatic charges are placed in a clear larger ball. Applying
an external charge causes the balls to separate[4]. (check permission)

Cameras and ScanningCharge oupled devies (CCDs) | solid state ameras. Sanning is the usual approah for digitizing apaper doument or piture. It may be done at di�erent resolutions; after sanning, the bitmap an beompressed. One sanned, images an be arhived, distributed, or proessed.Sanners or digital ameras digitize and analyze small areas of a piture and measure the brightness orolors in that small area.E�etiveness for reproduing readable text. The quality of the sanning for the resolution is shownwith the \quality index" (Eq.  A.30). [42]

Quality Index = h ∗ dpi; ( A.30)For fragile materials, it is neessary to employ non-destrutive sanning.
Video DisplaysRefresh rate. Number of pixels on a standard television display.[??] The \aspet ratio" of a video displayis that of length to width. Larger over smaller. Fig.  A.147 ontrasts the aspet ratio of television (A,B) with the aspet ratio for inema (C).

A B C
Figure  A.147: The aspect ratio is the ratio of the width of a display to its height. The ratio remains constant although
the absolute size may change. The ratio 4-to-3, as shown in Panels A and B is the standard for video. While the
ratio 16-to-9, as shown in C is used for cinema.



574 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13LCD displays, plasma displays, interlaing. The piture is presented on the sreen with rasters. Vetorgraphis. Raster.Broadast video. Vertial blanking interval. Di�erene in frame rates, olor depth, et.Readability of displays (10.3.1) [34].Rather than reating a sharp boundary at the edge of a harater, whih often appears as jaggies,anti-aliasing makes the boundary with a gradual fade to gray. Fig.  A.148 shows anti-aliasing.
Figure  A.148: Rather, than a sharp edge, pixels in a display create a jagged edge (left). To create the appearance
of a smoother edge, the edge pixels are grayed out.Pen tiling of display olors.

BitMap Displays(Fig.  A.149)
Figure  A.149: Memory management for bit-map displays.Overlapping Windows.

Other Types of Displays
Stereoscopic 3-D A variety of tehnologies have been developed to make stereosopi 3-D presenta-tions.
Head-Mounted Displays and Head Tracking Head traking.
Technologies for Personalized Displays Retinal painting.[??]
Immersive Display TechnologiesDisplays annot have the same degree of �delity as reality. In one study of a virtual reality system[56],the display was 0x120, 93-degrees by 61-degrees.
Volumetric DisplayVolumetri displays [16]. Painting into plasma.
Printing TechnologyResolution, DPI (dots per inh).[??]CMYK olor, a variation of RGB ( A.2.3), is used for printing.
3-D Hard Copy [1]
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 A.19. Sensor TechnologySensors are, typially, simple devies whih detet attributes of a system's environment. Attributessuh as motion, sound, temperature, air quality, and light are all easy to monitor. Bio sensors. Likeyou own eyes or ears, typially, sensors have relatively little omplex proessing apability of their own.
 A.19.1. Sensor DevicesSensor detet properties of the physial world. There are many types of sensors suh as body sensors.Transduers.

Bar CodesLow ost way to detet portable objets. Laser sanning and reetion. Bar odes (Fig.  A.150). Thespaing of the lines. A spae an represent a binary ode. There are di�erent oding systems. Oneommon system is The Universal Produt Code (UPC) was developed to identify prodution. QRodes. Near-�eld ommuniation (NFC).
Figure  A.150: Bar codes represent numbers with a binary code.

Radio Frequency Identification (RFID)Passive hip sensor whih responds to an external �eld with oded information (Fig.  A.151).Near-�eld ommuniation. A�eted by interferene.EPC - eletroni produt odes.RFIDs have many appliations. Use of RFIDs in hospitals in order to loate patients. Threats toprivay.

Figure  A.151: How an RFID sensor works[10]. (check permission)

 A.19.2. Sensor Networks and Sensor FusionSensors an be onneted in networks.Typially they have simple proessors, limited memory apaity, and limited power.
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( A.19.2). Hierarhial fusion versus mesh or grid fusion. Fusion of similar data versus fusion of dissimilardata.This often means that low-level information is proessed within the network. Sensor fusion ombinesinformation from many soures (Fig.  A.152). There is a hallenge about how to weight the informationappropriately.Hierarhial sensor networks and ommuniation in sensor networks.Many appliations: Sensor fusion for emergeny room data. RFID ( A.19.1).Generating too muh data. We need to automatially �lter the data. We attend to (4.2.2) to signi�antinformation.This is often noisy information with ambiguity. During the Cold War, the U.S. Navy maintained anarray of sensors in the North Pai�. These sensors had to be able to distinguish submarines fromwhales swimming in the oean.Distributed deision making.Sienti� instruments and data storage.Privay issues from potentially invasive sensor networks.One approah is hierarhial summarization Fig.  A.152.There an be loal interations among the units suh as exitation or inhibition of neighbors. Sensorsand feedbak. Parallel omputing ( A.17.5).

Figure  A.152: Data from many sources needs to be combined. Hierarchical organization of sensors.

Figure  A.153: A “sensor grid” is composed of sensors arranged on a grid. The first level of processing can be
communicating and combining evidence with neighbors.

 A.20. Storage Technology
 A.20.1. Storage Media

Magnetic StorageHelial san video. Many formats.[??]Iron-oxide. heads.There are many media for storing digital information; here, we onsider magneti tapes, magneti
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Figure  A.154: Ecological sensor network in Duck Island Maine. (check permission)disks and optial storage. Storage systems must be reliable. Although many tehnologies have beendeveloped, magneti disks are so widely deployed that they are hard to beat.The oxide on reording tapes has a lifetime of about 10 years, after whih it beomes unstable. Oldtapes may be baked before being played whih auses the oxide to adhere.Many television programs are mastered on �lm to better preserve them.
Optical StorageLasers allow �ne resolutions of data to be made on a metalli surfae, as, for example, on a CD.There is about 650 MB of spae on a CDROM. This is about 68 minutes of sound reordings at onstantbit rate. 16-bit enoding on a spiral trak.[??]

Figure  A.155: Reading from a DVD. (check permission)The digital video disk (DVD) an store 4.4 GB per disk. It has a double layer of reetive materialand is double sided. It also improves the density of storage by using a blue laser for reading the diskrather than the red lasers used by the CDROM.
 A.20.2. Low-Level Data Storage

Parity and Check SumChek that the data has not be orrupted when it is transmitted on a network or stored on a disk.Cheksum for redit ard veri�ation. Fig.  A.156. If any of the bits in the data have been orrupteda realulation of the parity bit may ag the problem.Error-orreting odes.
Parity

Data bit

0 1 0 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1

Figure  A.156: A parity bit is calculated as a count of the number of even or odd bits.

Placement of Content on Disk DrivesThere are physial restritions on how data an be plaed on a disk. The data must be plaed on



578 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13traks, and the heads must be positioned above those traks in order to read the ontent.When multimedia ontent are stored on a disk.Striping, Speed of streaming.Disk ahing. Random positions are better than standard plaement.
Archival StorageAll physial storage media are unreliable. We want to be sure that one reliable opy of a doument ispreserved. Digital preservation earlier (7.5.1). How to be sure that the originals are not able to be easilyorrupted. LOCKSS protool (Fig.  A.157). When numerous sites are polled, they an essentially takea vote to determine whether any of the opies has been orrupted. If a orrupted �le is found, the goodversion an replae it.

Figure  A.157: In the LOCKSS protocol, a target version of a document can request that a comparison be made
with other stored versions of the same document[59]. If a discrepancy is found a voting procedure determine which
copy has, most likely been corrupted. (redraw)(check permission)
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