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Abstract.  We have proposed going beyond traditional ontologies to use rich semantics 
implemented in programming languages for modeling.  In this paper, we discuss the 
application of executable semantic models to two examples, first a structured definition of a 
waterfall and second the cardiopulmonary system.  We examine the components of these 
models and the way those components interact.  Ultimately, such models should provide the 
basis for direct representation. 
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1. Introduction 
An ontology describes entities and relationships among entities.  We go beyond typical ontologies to 
implement a model layer.  Our approach develops executable semantic simulations using a programming 
language.  While we take upper ontologies as providing a form of data typing [7], semantic modeling 
requires many additional features such as complex objects with states and mechanisms.  In previous work, 
we have suggested the value of object-oriented analysis with rich semantics to the systematic description 
of natural systems.  This is supported by Galton and Mizoguchi’s definition of objects: 

…we identify an object as an interface between those processes which are internal and 
those processes which are external to it… ([15] p. 1) 

The main goal of this work is the integration of many different approaches into a comprehensive framework.  
Our primary interest is in description rather than inference.  Sections 2 and 3 provide examples of semantic 
modeling that are discussed in greater detail in later sections.  Section 2 presents a structured definition of 
a waterfall.  Section 3 provides an executable model of the cardiopulmonary system.  Section 4 describes 
Parts of Objects while Section 5 considers their Behavior and States.  Section 6 discusses Functions, 
Mechanisms, Systems, and Microworlds.  Section 7 describes Modeling.  Finally, Section 8 considers 
validation and extrapolating mechanisms as well as semantic modeling for scholarly communication. 

2. Structured Definitions 
2.1 Waterfall Example 

The philosopher Heraclitus famously said: “You can never step into the same river twice.”  He concluded 
that “all is change”.  By comparison, other philosophers emphasize the static nature of objects.  Still others 
adopt a hybrid that is also consistent with natural language, which has both verbs and nouns.  In most cases, 
verbs act on nouns.  When one is running, one is changing position in space.  Nonetheless, Heraclitus’s 
river is still widely discussed.  The action of flowing is integral to the essence of what it means to be a river.  
A version of this quandary focusing on waterfalls has recently been discussed [15]. 

According to dictionary definitions, a waterfall is: 

… a cascade of water falling from a height, formed when a river or stream flows over a 
precipice or steep incline1

1 https://www.lexico.com/en/definition/waterfall 
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and, 

an area where water flows over a vertical drop or a series of steep drops in the course of a 
stream or river.2

 class StreamPath(): 
  def TraverseUpperStreamBed(self,i): 
    for L in range(0,self.upperBedLength): 
      self.water[i].X = self.water[i].X+10 
      self.water[i].Y = self.water[i].Y-1 
      self.water[i].Location="upper" 
  def TraverseDrop(self,i): 
    for V in range(0,self.verticalDrop): 
      self.water[i].X = self.water[i].X+1 
      self.water[i].Y = self.water[i].Y-10 
      self.water[i].Location="drop" 
  def Pool(self,i): 
    self.water[i].Location="pool" 
  def __init__(self, water): 
    self.water = water 
    self.upperBedLength=1000 
    self.verticalDrop=100 

class WaterPortion(): 
  X = 0 
  Y = 0 
  Location="null" 

class Waterfall(): 
  def WaterFlowing(self): 
    i=0 
    while(True): 
      self.water.append(WaterPortion()) 
      self.bed.TraverseUpperStreamBed(i)    
self.bed.TraverseDrop(i) 
      self.bed.Pool(i) 
      print(i,self.water[i].Location) 
      i = i+1 
  def __init__(self): 
    self.water = [] 
    self.bed=StreamPath(self.water) 
    self.WaterFlowing() 
def run(): 
  W = Waterfall()

Figure 1: Python program that defines and implements a simple simulated waterfall. 

Figure 1 shows a structured definition for a waterfall that covers the key features of the definitions.  We 
have incorporated specific parameters, so it is executable and provides a simple simulation of a waterfall.  
There is a class for the Waterfall itself and two other classes for the main parts of a waterfall: the StreamPath 
and the Water.  In the program, the water flows in the stream bed with a small slope and then comes to a 
steep drop.  Because of the constructor ( __init__ ), the water starts to flow as soon as the program is 
initialized.  The water is modeled as individual Portions (Sections 2.1, 4.2) and is assigned to different 
location states as it flows (e.g., upper stream, drop, pool). 

2 https://en.wikipedia.org/wiki/Waterfall 
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2.2 Commentary about the Waterfall Example 

Defining objects with object-oriented classes highlights and provides a structure for resolving the issues 
raised by philosophers and lexicographers.  The ongoing transitions of portions, or droplets, of water are 
integral to the definition of rivers and waterfalls.  Similarly, transitions are integral to some other objects 
such as stars and systems such as the solar system, but most objects are initially static and demonstrate 
changes only when they are the subject of Transitionals (e.g., a person starts to run).  There are many 
refinements we could introduce.  If it were a stream rather than a river, we could adjust the amount of water 
accordingly and model the bed in greater detail.  We could also model the waterfall if it froze.  Each cycle 
of the while loop could check the current state of the water to make sure it is fluid.3

Coordination between molecules and macroscopic effects is a common issue for semantic modeling of 
fluids (Sections 4.2, 8.1).  In Figure 1, we model the movements of small Portions of water.  However, an 
actual portion of fluid would not retain continuity over time.  Thus, this is an idealized model in which the 
Portions remain unified. 

Because we are dealing with a qualitative, or nominal, model we could have simply moved Portions across 
the qualitative states.  Rather, to add fidelity to the model, we moved Portions across numeric units.  This 
makes it an ordinal model rather than a purely qualitative model (see Section 7.1).4  Ideally, extending 
model resolution would be relatively seamless.  Because this is an interpreted Python program, we could 
pause it as it runs and manually examine the value of any variable.  In the future, we could add a graphic 
control panel to support more flexible ways to interact with the model (Section 7.3). 

2.3 Frame Net Analysis 

Frame Net [2, 28] is a linguistic resource based on the theory of frame semantics [13].  The key idea is that 
rather than just activating the meaning of scattered words in a sentence, a broad context is activated.  Frame 
Net identifies and describes approximately 1500 Frames.  One of those frames is Fluidic_Motion: 

A Fluid moves from a Source to a Goal along a Path or within an Area5

The core Frame Elements of Fluidic_Motion are Fluid, Source, Goal, and Path/Area.  Other, non-core 
Frame Elements include Configuration, which specifies parameters such as the volume and speed of the 
Fluid. 

In addition, specific Lexical Entries (i.e., words) are associated with each Frame.  Flowing is a Lexical 
Entry associated with the Fluidic_Motion Frame from which it inherits the Frame Elements.  Although 
Frame Net does not give a detailed analysis of Flowing it does provide this definition: 

To move with a continual change of place among the constituent particles6

The WaterFlowing routine in Figure 1 embeds the core Frame Elements along with features of this 
definition.  Alternatively, the Fluidic_Motion Frame Elements could have been represented with the 
familiar functional notation: 

Flow (Fluid, Source, Pool, Path) 

3 This is a version of two-phase validation (Section 8.1).  Validation could also be addressed by contracts such as 
those implemented in the Eiffel programming language.  For semantic modeling, the contracts could include 
inheritance and semantic tests.
4 Ordinal models are not full quantitative models.  Quantitative models might employ massively parallel computation 
using the Multiscale Object-Oriented Simulation Environment (MOOSE) [12, 14].  For the waterfall, a full 
quantitative model might be based at the molecular level and also fully model the erosion of the stream bed.  
Nonetheless, although the simulation can be highly numerical, the description may still be mostly qualitative. 
5 https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Fluidic_motion 
6 https://www.merriam-webster.com/dictionary/flow
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In the case of the waterfall, a Path is a recursive series of segments with width, length, and slope.  Other 
Parameters could be incorporated by adding the Configuration non-core Frame Element.  In addition, the 
flexibility of the code could be enhanced if we defined an abstract class FluidicMotion. 

In Frame Net, the Lexical Entry for a Waterfall is associated with the Natural_Features Frame: 

The Locale is a geographical location as defined by shape. This frame includes natural 
geographic features, including land/ice forms and bodies of water. 

Potentially, we could develop a microworld terrain model for the surrounding environment (Section 6.4) 
by linking the Natural_Features Frame and other Frames with the Fluidic_Motion Frame. 

A much larger standardized vocabulary should be developed that could support hooks for the 
interoperability of the frames.  Beyond a collection of structured Frame Elements, there could be 
standardized computational descriptions for the Lexical Units.  In addition, for some definitions, 
functionality is as important as structure, and those programmatic definitions could include that aspect 
(Section 6.1). 

3. Executable Semantic Model of the Cardiopulmonary System 

3.1 Overview 

We also developed a stylized, textbook-level executable semantic model of the Cardiopulmonary System 
as a proof-of-concept for our approach.  This example highlights the application of semantic modeling to 
Mechanisms and Systems.  As shown in Figure 2, O2-rich air moves from the nose to alveoli in the lungs.  
There, O2 diffuses into the blood and CO2 from the blood passes back into the lungs.  The O2 then circulates 
through the heart and out to the body.  Cells in the body use the O2 and return CO2 into the blood.  In 
addition, a sensor in the medulla triggers the diaphragm if there is too much CO2 in the blood.  Our model 
is asynchronous and has several threads.  We implemented two main subsystems: circulation and respiration.

For the circulatory sub-system, the contraction of the heart spreads across its four chambers.  Portions of 
blood are moved throughout the system with each heartbeat.  We modeled capillaries at the lungs, at a 
typical body cell, and at a sensor in the medulla.  For the respiratory sub-system, a portion of O2-rich air is 
drawn through the nose into the alveoli in the lungs.  The O2 diffuses into a portion of blood in the capillaries 
and, at the same time, CO2 passes from the blood into the portion of air.  That portion of air is then exhaled 
through the nose out to the external air.  For the capillaries, we modeled a physical structure (i.e., the 
capillary tube), a non-material spatial region, and a small portion of fluid (either blood or air) contained 
within that spatial region.  As with the Portions of Water in the Waterfall example, we assume that these 
Portions pass through the circulatory system intact (Sections 2.2, 4.2).

The modeled blood and air flows follow the solid black lines shown in Figure 2.  For both the respiratory 
and circulatory systems, explicit connection relationships were set between the nodes.  Further, the presence 
of a connection was validated before any Portions were pushed.  Because the network never changed in 
this version of the model, that check was mostly redundant.  Rather than trying to synchronize pushing 
individual portions through the circulatory system, all updates were calculated and then implemented 
simultaneously.  The timing for the modeled motion of the fluids was rough.  The respiratory system was 
triggered independently by the Medulla and the circulatory system by the SA Node. 
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Figure 2: A schematic model of the cardiopulmonary system. The major organs (lungs, heart, and brain) are shown. The solid 
black lines connecting the organs show the path for blood and air flow. The black dotted line shows the Phrenic Nerve which 
controls the diaphragm. Also shown are enlargements of the capillaries at a typical cell and at a typical alveolus. Respiratory and 
circulatory sub-systems can be identified along with mechanisms for nerve signaling and gaseous diffusion. While the connectivity 
is included in the model, relative spatial positions are not. 

Figure 3 shows a sample output as the program runs.  Because the systems are asynchronous, the updates 
are interleaved.  In the figure, we can see examples where the SA Node triggers and Portions of blood are 
pushed in the circulatory sub-system, cases in which diffusion occurred, and an example of a contraction 
of the diaphragm causing a breath to be taken. 

Figure 3: Two panels showing a section of continuous output from the cardiopulmonary semantic simulation system. 

3.2 Commentary about the Cardiopulmonary System Example 

This model implements systems, sub-systems, and mechanisms.  The fluid motion of the air and the blood 
could be implemented with the FluidicMotion abstract class described above in Section 2.2.  The model 
incorporates many simplifications; it uses only simple motion and simple structures. 
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The nerve impulse was not modeled in detail but could have been implemented as sodium channels opening 
and closing along the neuron.  The sensors can be seen as providing information about the CO2 level, which 
is transmitted to the diaphragm.7

We could generate a family of related models of different levels of complexity.  On the one hand, we could 
model cell metabolism.  On the other hand, we could extend this model to include interaction with other 
body systems such as the digestive system.  Moreover, the model of the entire cardiopulmonary system as 
described here could be adapted for use across species of mammals. 

4. Parts 

4.1 Functional and Structural Parts 

We focus here on Functional Parts, which are Objects that are essential for a state change in the model 
(Section 6.1).  Mechanisms link behavior and parts; they show how the functionality is accomplished.  We 
also allow Structural Parts such as the stream bed in Section 2.  Structural Parts are essential for the physical 
instantiation of a Mechanism without contributing directly to the functionality.8  Structural Parts support 
the interaction of parts but do not show state changes themselves.  For instance, the bracket holding a car’s 
carburetor in place would be a structural part supporting the carburetor.  The bracket may be composed of 
several separate pieces and the array may be considered an Assembly.9

Several fields have developed resources for structural and functional parts that could be incorporated into 
our models.  For instance. mechanical engineers and computer graphics researchers have developed CSG 
(Constructive Solid Geometry)10 which is a structural modeling framework that allows for the relative 
motion of parts such as the motion of joints.  Similarly, frameworks from anatomy (e.g., [10, 17]) and 
structural biology could be incorporated. 

4.2 Composition and Portions of Matter 

Beyond the usual notion of Functional Parts (e.g., the engine, tires, and body of a car), we sometimes 
consider the materials of which an Object is composed.  We saw examples in Sections 2 and 3 where water, 
blood, and air are better described as Substances rather than Objects.  [18] describes a typography of 
Substances and Mixtures.  In Sections 2 and 3, we defined Portions of the Substances and took the Portions 
as Objects [31].  Some of the challenges in this area can be traced to the uneven treatment of atoms and 
molecules as Objects.  Adding or subtracting a few molecules of water does not materially change a lake.  
The difference between water molecules and the lake is a granular perspective [18, 31].  We propose a 
multi-granular perspective which allows modeling the different levels at the same time. 

5. States, Transitions, and Behavior 
Objects change; but how should we model those changes?  We adopt State Transitions.  The notion of State 
is widely recognized in information processing.  Roughly, a State is a distinct condition of an object for a 

7 The mechanism for transmitting the nerve signal is relatively straightforward.  The notion of “information” may be 
most useful as a shortcut at the model-level when the mechanisms are not specified. 
8 [24] proposes that the Structure of an Object consists of all the internal relationships of that Object.  Further, he 
proposes that Structure should be considered as an entity in its own right.  This seems consistent with the definition 
of Objects by classes in an object-oriented programming language but differs somewhat from the use of Structure in 
this section. 
9 Although such a bracket can be said to provide a function -- that of positioning the carburetor to allow it to interact 
with other parts –that is a secondary function. 
10 https://en.wikipedia.org/wiki/Constructive_solid_geometry 
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given period of time.  We distinguish between Object-Centered States, which are associated with a single 
Object, and Ensemble States, which describe the interaction of several independent Objects. 

5.1 Object-Centered States 

The State of an Object is interwoven with its Parts.  In many cases, it is the activity of Parts that makes a 
State.  One example is that when a person is running their legs are moving quickly back and forth.  Another 
example would be describing phase changes in a material which is due to the excitation of its 
atoms/molecules.  State changes for a traffic light (cf., [8]) can be modeled as State changes of separate 
(green, yellow, red) lamps within the light.  But, ultimately the State of those lamps is due to the activity 
of electricity (i.e., electrons) flowing.  The example of the Waterfall (Section 2) is unusual because the 
flowing water is not a State but is integral to it being a waterfall.  We refer to the traffic light and the 
waterfall as having multi-granular states because the parts (e.g., the electrons) are at a different level than 
the parent object.  Other State changes are due to changes in functionality (e.g., usable/unusable) although 
these differences may, ultimately, also be based on changes of Parts.  Still other types of State changes are 
due to changes in space and/or time. 

5.2 Ensemble Interaction and States 

We can model the States of interacting Objects.  An underlying question is when independent Objects may 
better be considered as a single, unified Object.  Examples include one and the clothes one is wearing, a 
couple who gets married, or a car that gets a new coat of paint.  These might be implemented as Relational 
Qualities connecting two Objects (e.g., [9] p 97-98) though it would be helpful to have more nuanced 
descriptions of the possible types of relationships that could be used.  In some cases, we can treat the new, 
unified object as a replacement for the previous object.  The car with a new coat of paint could be considered 
as an update to the car.  In other cases, new entities exist but are highly transient such as a party with its 
revelers or a chemical bond existing fleetingly during a reaction.  In still other cases, these Objects retain a 
context-dependent duality.  When a person becomes part of a couple, that person’s professional activities 
may be relatively unchanged while other activities are as part of the couple.  This is comparable to the 
relationship between molecules and the atoms that compose them.  In yet other cases, the Objects retain 
their distinct identities but are joined by their participation in an activity.  We consider a pianist as distinct 
from the piano that is being played although both are involved in the same scenario. 

5.3 Transitionals and Behavior 

States imply the possibility of State changes.  We use the more general term Transitionals to include other 
types of transformations of objects such as birth, death, splits, and merges.  State changes are often changes 
of parts, but not all changes of parts result in State changes of the parent Object or vice versa (Section 5.1).  
Thus, we can distinguish Behavior from State changes.  When a person is running, their legs are constantly 
moving but are not constantly changing State.  Likewise, water molecules are always vibrating and spinning 
but small changes in those activities do not change the State of the water. 

In some cases, we might ask whether an Object has States or even Behavior.  For example, some physical 
objects such as a bridge or chair provide a function (i.e., a river crossing or a seat), but have little apparent 
motion.  Nonetheless, they do deform when used and, presumably, the bonds between their atoms and 
molecules are affected.  At a low level of granularity, they are in a state of tension when providing a function. 

5.4 Relationship to Object-Oriented Analysis and Modeling 

In earlier papers, we have noted the similarity of semantic modeling to object-oriented analysis and 
modeling.  There is not unanimity about the definition of object-oriented modeling, but we can consider 
several of the most common features associated with it - abstraction, inheritance, encapsulation, and 
polymorphism (e.g., [20]). 
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An example of abstraction is our use of abstract methods to describe the contraction of the heart or 
diaphragm.  Objects in our models exhibit inheritance; for instance, different mammals could inherit a 
general cardiopulmonary system model such as described in Section 3.11  Encapsulation suggests that the 
methods used by an Object should be hidden and inaccessible except by hooks at the top level.  However, 
because we have multi-granular modeling, the Parts of Objects and the methods associated with them are 
generally exposed (Section 5.1).  Polymorphism means that methods may be overloaded.  While our 
examples do not include Polymorphism, potentially they could. Object-oriented languages such as 
Smalltalk propose that objects should communicate via message passing.  In the cardiopulmonary example, 
the Phrenic Nerve can be thought of as passing messages to the diaphragm.  For models of physical 
interaction with collisions between objects, those collisions can be considered as a type of message passing. 

6. Functions, Causation, Mechanisms, Systems, and 
Microworlds 

6.1 Functions 

Mechanical engineers often identify three dimensions for describing their models: Function, Behavior, and 
Structure (FBS or SBF) [16].  In Section 4 we addressed Structure such as Parts and Assemblies and in 
Section 5 we addressed Behavior (and State).  In this section, we turn to Function. We include how 
something is used along with its function. 

To assert that an Object has a Function we need to know its broader context.  If someone in the Middle 
Ages had, somehow, created an object identical to a modern carburetor, we would not say that that object 
has the function of a carburetor.  In other words, we assert that a Function is relative to a Mechanism, 
System, or Scenario, and a description of a Function needs to include a context – perhaps by identifying a 
Mechanism or System with which it is associated.12  For example, while the study of anatomy is most often 
concerned with structure, reconciling parts and functions is a traditional issue for anatomy [10, 22, 26]. 

6.2 Causation 

Modeling sequences of events assumes that the events do not happen at random, that they are, in some 
sense, based on earlier events.  We say that events are caused by those earlier events.  Nonetheless, the 
notion of causation is highly contentious.  Much of the problem is due to the difficulty of ascertaining 
causation retrospectively.  That often involves possibly unreliable evidence and uncertain inference.  
Similarly, assessing causation is difficult when the Objects, Parts, and Transitions are ambiguous.  However, 
in a model, where we define all of the Objects, Parts, and Transitions, there is little controversy about 
causation. 

Basic science identifies types of Objects in the world as well as their Parts and Transitions.  In other words, 
basic science can be seen as developing consistent descriptive frameworks ([9] pp 12-13).  By comparison, 
applied science attempts to use those frameworks to predict or explain real-world phenomena.  Given 
science’s success, it is reasonable to identify objects as entities with “causal powers” [24] and that what is 
real is what is consistent with scientific results. 

11 It is unlikely that simple single inheritance can always be applied across entire complex objects and systems.  
Presumably, some way of indicating exceptions and inheritance by Function/Use or Behavior could be adopted. 
12 Perhaps the need for the existence of a Mechanism or System is what the Basic Formal Ontology (BFO) intends by 
declaring that Functions are Realizables.  For example, [9] (p 104) states that “to detoxify its containing organism is 
a function of this liver” ([9] p 104).  However, BFO has no clear notion of Mechanism, System, or Scenario. 
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6.3 Mechanisms 

[4] described some simple semantic Mechanisms based on Petri Nets.13  Mechanisms based on Petri Nets 
are the foundation of functional descriptions.  Although we can trace a mechanism between any two 
causally connected Objects, we most often focus on Mechanisms that are directly responsible for the 
functioning of a system.  In some cases, such as the Central Dogma in biology, which describes the steps 
from the transcription of DNA to the production of proteins, a Mechanism may be multi-granular.  That is, 
a transition at a low level can dramatically affect the dynamics of a system at a higher level across time. 

A side effect is a change that is not directly needed for the completion of a given Mechanism.  For instance, 
a reaction may produce heat that does not affect the completion of the Mechanism that produced it.  But 
that heat may affect other Mechanisms.  Although developers are urged to avoid them in well-designed 
systems, side effects are inherent in many natural systems and must be included in models. 

6.4 Systems, Sub-Systems, Microworlds, and Scenarios 

A system is a complex object which is composed of several interacting Mechanisms (cf., [2]).  Several 
different types of systems may be identified.  Many are purely feed-forward, while others have feedback.  
Some of the latter have an internal regulator and manage homeostasis while others of them are chaotic even 
if they attempt regulation.  We can model much of the behavior of systems with feedback with semantic 
tools, although for purely semantic models the non-linearities need to be described qualitatively. 

“A Microworld is a restricted, idealized model of the world containing only those relations and entities of 
interest in the particular reasoning system being designed” ([11] p 6).  A System implemented in a 
Microworld may show spatial relationships (e.g. “next to”) and may reflect other constraints (e.g., “is 
symmetrical”).  We also allow ambient properties such as temperature, humidity, and even gravity.14

To distinguish the Microworld as a frame or platform from its representation of the world, we call the latter 
Scenarios.  We have considered Scenarios at several different points in this work.  A terrain model 
incorporating the Waterfall example and the Cardiopulmonary system in Figure 2 are Scenarios.  We might 
use a variation of Figure 2 to describe what happens when a person is running or what happens when a 
person’s heart stops beating.  This is not intended to be generalized inference about broken mechanisms 
(see Section 8.1); rather, it is a targeted extension of a model to handle a specific situation.  It can be 
considered as a semantic modeling alternative to referential ontologies [23]. 

7. Modeling 

7.1 Model Operators 

In addition to the data types such as Objects, Transitionals, and Mechanisms, we also allow familiar data 
modeling features such as cardinality.  Thus, we may specify that a mammal has two ears, two eyes, and 
two or four legs.  Because the programming language is integral to the modeling, we also need to recognize 
language features such as looping, conditionals, concurrency, and threading. 

While the current models are primarily qualitative (i.e., categorical or nominal), they also include simple 
binary comparisons (e.g., high and low concentrations of O2 and CO2).  They could be extended across 
richer levels recognized by data analysis as ordinal, interval, and ratio models. 

13 In comparison to the model of the cardiopulmonary system (Section 3), the models in [4] were ad hoc functional 
accounts without systematic descriptions of Behavior or Structure. 
14 Standard temperature and pressure (STP) is the default. 
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7.2 Meta Operators and Annotation 

Meta-operators are elements incorporated into a model to make it more tractable.  Along with Annotations, 
they show how the model does not fully reflect reality.  The meta operators would include approximations 
to continuous operations (e.g., diffusion), cross-granular descriptions [21], approximations to stochastic 
processes, picking typical or random examples, and compensation for non-linearities.  Structured 
annotations may include describing simplifications (i.e., eliminating unnecessary detail) and idealizations 
(i.e., intentionally inaccurate statements which, nonetheless, improve clarity).15  Other types of annotations 
could include comments from users. 

7.3 Explanations and User Interaction 

As described in Section 2.2, a graphical control panel could be developed for user interaction with the 
programs.  The interface would have modes suitable for different types of users (e.g., students, researchers, 
editors).  In addition to graphical interaction, there could be a natural language interface.  That could employ 
text generation based on the model operators and annotations described in the previous sections.  The text 
generation could also apply discourse elements [1] such as those from Rhetorical Structure Theory (RST) 
[19].  It might even support tutoring.  We may also be able to develop a grammar for manipulating the 
model.  Such a grammar could be a sort of interactive, model-based programming language. 

8. Discussion 

8.1 Validation and Extrapolating Mechanisms 

While our primary goal is description, it is useful to validate the programs as much as possible.  For instance, 
we should validate that the application of Transitionals does not violate any of the assertions made by 
relationships.  The example in Section 2 includes some checking, but more is needed.  This can be done 
with two-phase validation which was described in our previous work [6].  That is, applying traditional 
validation of triples after every step of the model. 

8.2 Semantic Modeling for Scholarly Communication 

We expect that models like those described here will be the basis of direct representation research reports 
[3].  Such reports would describe scientific research based on a structured knowledge base.  In addition to 
modeling natural phenomena, the models would incorporate structured descriptions of research workflows 
and data analysis workflows [4].  Claims could be made about aspects of Mechanisms and evidence from 
observations applied to support or contradict those claims.  Deemphasizing text will eventually lead to less 
need for text mining. 

Potentially, both students and researchers would benefit from browsing knowledge structures.  Standards 
for constructing the models could be developed and libraries of models could be collected.  If we develop 
libraries of composable mechanisms16 and models, then users should be able to bridge out to related models 
and also to drill down from more general models to more detailed models.  Moreover, broken Objects and 
Transitions will likely affect the Mechanisms in which they participate (e.g., [25, 26, 29, 30]). A well-
documented library of Mechanisms would be of great value for making predictions about the impact of and 
solutions to those broken Object and Transitions. 

15 See https://plato.stanford.edu/entries/models-science/ 
16 For example, the introduction to many research papers starts by listing known mechanisms associated with the 
phenomenon under study. 
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8.3 Envoi 

We have sketched a broad framework and emphasized a broad synthesis of many approaches.  In Section 
2 we developed a programmatic implementation of natural language definitions which is consistent with 
Frame Net.  In Section 3, we implemented a semantic simulation of interacting components of the 
cardiopulmonary system.  In Sections 4-7, we considered issues for the implementation.  Although these 
examples are relatively simple, they are potentially composable and scalable.  We envision that the current 
generation of ontologies will eventually be replaced by terms with fully-structured definitions.  However, 
challenges remain, such as how to manage consistency in the assumptions made when describing the 
interaction of several related mechanisms. 
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