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Abstract:  We explore using the Suggested Upper Merged Ontology (SUMO) to develop a 
semantic simulation.  We provide two proof-of-concept demonstrations modeling transitions in a 
simulated gasoline engine using a general-purpose programming language.  Rather than focusing 
on computationally highly intensive techniques, we explore a less computationally intensive 
approach related to familiar software engineering testing procedures.  In addition, we propose 
structured representations of terms based on linguistic approaches to lexicography. 
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1 Introduction 

We believe knowledge representation should be fully integrated with programming languages.  
Therefore, we are exploring the implementation of dynamic semantic simulations based on 
ontologies using a general-purpose programming language (cf., [4]).  These simulations allow 
model-level constructs such as flows, states, transitions, microworlds, generalizations, and 
causation, and language features such as conditionals, threads, and looping. 

In this paper, we provide initial demonstrations for how the Suggested Upper Merged 
Ontology (SUMO) can be applied to Python-based semantic modeling.  SUMO has both a rich 
ontology and a sophisticated inference environment built to use first-order predicate calculus [9, 
15, 16, 25, 27, 28].1  The SUMO ontology incorporates approaches from several other ontologies 
([28] p94).  Like the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) 
[12], SUMO also incorporates insights from linguistics.  In fact, one extension of SUMO explores 
Natural Language Generation ([17]). 

The SUMO ontology is implemented with SUO-KIF, which is a subset of KIF (Knowledge 
Interchange Format) [18].  KIF is a notation based on the operators of first-order logic (FOL).2  As 
a type of description logic, SUMO includes rules, which are implemented with formulas.  These 
represent constraints about the world. 

Computationally intensive theorem proving for large ontologies has been the focus of much 
of the recent research on SUMO.  By comparison, we explore state-based modeling for small 
example applications.  This is a companion to [4] semantic modeling using the Basic Formal 
Ontology (BFO) [10].  As in that work, the interactions studied are object-driven.  We do not focus 
on complex inference in this paper; rather we apply simple test cases analogous to those used in 
requirements testing and model checking [14, 18] to detect possible conflicts in domains, states, 
and relationships following Transitions. 

Truth maintenance [24] considers how to ensure that there are only true statements in a 
knowledgebase as new statements are added.  The original knowledgebase is assumed to be true 
and any incoming statements that conflict with those are rejected.  Research on Truth Maintenance 
Systems (TMS) explores robust and general abstractions to detect and resolve conflicts.  In the 
interest of practical applications, we support lightweight, tractable approaches to inference and 
truth maintenance.  These approaches are related to those from software engineering used to 

1 General information about the SUMO project is available at http://ontologyportal.com/ap/.  SUMO’s 
full KIF files, its code and other tools are at https://github.com/ontologyportal/sumo.  The bulk of the SUMO 
ontology and the software are available with only light restrictions.  When first exploring SUMO, we found 
it best to use only a few of the KIF files, together with the Python interface, and a moderately powerful 
computer. 

2 FOL has been criticized as allowing too much flexibility [26, 33] to be a suitable platform for 
ontologies.  However, much of the SUMO ontology avoids the possible pitfalls and any lapses could be 
remedied.  Indeed, we believe that BFO itself could be largely implemented in SUO-KIF. 



2 

develop test cases.  We do not attempt automated repair of the truth values.  Rather, inconsistencies 
are highlighted for the developer.  In short, our approach is related to TMS but more modest. 

2 Details about SUMO 

All terms in SUMO are descended from Entity.  One branch, Abstract Entities, includes 
Relations, Predicates, Subclasses, and Instances.  Abstract Entities form the Structural Ontology, 
which allows us to construct axioms (and rules, as described below) in SUO-KIF.  An example of 
a typical axiom is: (instance thisGasEngine GasolineEngine).  This is read as “thisGasEngine is an 
instance of the class GasolineEngine”.  “instance” is a BinaryPredicate that relates the instance to 
the class.3

SUMO’s main ontology file, Merge.kif, contains the Structural Ontology and Base Ontology.  
The SUMO GitHub distribution also has about 25 other .kif files including the Mid-Level-
Ontology.kif (MILO) and the North American Industrial Classification System as naics.kif.4  Taken 
together, these files can be considered a type of foundry.  Rules are structured using the KIF 
operators: implies or IF, (=>, Exists, and And.5  Other KIF operators include Or, ForAll, Not, and 
IF-and-only-IF, (<=>. 

In Dining.kif, one of the lower-level ontologies, we find “(subclass Bakery Business)”.  The 
SUMO term Bakery is also associated with the rule shown in Figure 1.  Query terms are preceded 
by a “?” so “(instance ?BAKERY Bakery)” is read as “is there an instance of a Bakery”.  The rule 
asserts that a Bakery does Baking of Food for Humans and that it is a CommercialService. 

(=> IF
(instance ?BAKERY Bakery) there is an instance of a BAKERY
(exists (?SERVICE ?FOOD ?BAKE) THEN 

there exists a Service that Bakes Food 
(and AND

(instance ?BAKE Baking) there is an instance of Baking
(result ?BAKE ?FOOD) that Baking is baking of Food
(instance ?FOOD (FoodForFn Human)) that Food is Food for Human consumption
(agent ?BAKE ?BAKERY) the Bakery does the Baking
(instance ?SERVICE CommercialService) there is a CommercialService
(agent ?SERVICE ?BAKERY) the Bakery is the agent of that CommercialService
(instance ?SERVICE Selling) the CommercialService engages in Selling
(patient ?SERVICE ?FOOD)))) this CommercialService sells the Food the Bakery Bakes

Figure 1: Rule associated with a Bakery from Dining.kif.  Interpretation is added on the right. 

We are interested in the relationship between knowledge representation and programming 
languages.  While the SUMO ontology allows states and state changes, states in themselves are not 
distinct, “real” entities.  Thus, they are not accepted into so-called realist ontologies such as BFO. 

Rules are also integral to the definition of Processes in SUMO.  For instance, the Process of 
Cooking is considered to be the preparation of food and Baking is Cooking using an Oven.  Figure 
2 shows a SUMO Rule for the Process of TurningOffDevice, which is a type of InternalChange.  
DeviceOn is an instance of an internal state that may be changed.  Another example of StateChange 
in the SUMO ontology is an explicit PhysicalState Attribute (i.e., Phase Changes) for Substances 
whose change is described with an explicit StateChange Process. 

3 By convention, instances are usually identified with lower case letters.  Care is sometimes required to 
interpret the statements.  For instance, “attribute” is a predicate while “Attribute” is an Abstract Entity. 

4 The distribution also includes YAGO-SUMO ([16], [28] chp9) that has many facts pulled from 
Wikipedia.  In addition, WordNet terms ([28] chp5) are mapped to SUMO terms. 

5 In some cases (e.g., Figure 1), rules specify context and attributes for Objects.  In other cases (e.g., 
Figure 2) they can specify Objects associated with processes (e.g., Figure 2).  In addition, rules are used in 
the Structural Ontology to specify the effects and constraints of Relations such as Predicates. 
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(=> IF
(and AND

(instance ?P TurningOffDevice) there is an instance of TurningOffDevice
(patient ?P ?D)) the patient of TurningOffDevice is a Device, D

THEN
(and AND

(holdsDuring begins during 
(BeginFn (WhenFn ?P)) some interval 
(attribute ?D DeviceOn)) when the device is on

(holdsDuring ends during
(EndFn (WhenFn ?P)) some interval
(attribute ?D DeviceOff)))) when the device is off

Figure 2.  Rule associated with the Process of TurningOffDevice from Merge.kif.  Interpretation is added on the right. 

3 Semantic Modeling Using a Simplified Python-Based Version of SUMO 

3.1 A Simplified Python SUMO Environment 

In the SUMO software, SUO-KIF statements are processed by KB.java.  KB.java is descended 
from software originally developed by Teknowledge Inc.  It supports theorem proving engines such 
as Vampire and E.  Much of the recent research with SUMO has emphasized Typed First-Order 
Logic. 

We implemented a portion of the SUMO software functionality in Python.  Python was 
selected because it supports a variety of data structures and direct access to internal class structures.  
As described in Sections 4 and 6, we applied the program to a fragment of the SUMO ontology.6

Our primary goal was a demonstration of the concept. 

3.2 Semantic Modeling with Simplified Python SUMO 

The primary goal of ontologies is to describe the types of objects in the world and the types of 
relationships among those objects.  There is less attention to how simple objects (e.g., parts) are 
combined into complex objects such as Systems and Devices and how Systems would participate 
in simulations. 

Transitions, States, and Mechanisms:  We identify Transitions (i.e., actual state changes) as 
a distinct type of Process.  Sections 4 and 6 provide examples of applications that use Transitions.  
Flows are sequences of Transitions.  In previous work, we have discussed several types of Flows 
such as Mechanisms, Workflows, and ad hoc Causal Sequences.  Note that as shown in Figure 2, a 
variety of conditions can be imposed on a Transition.  For instance, Transitions may be restricted 
to occur only in certain States.  While object-oriented models are not necessarily used to develop 
state machines, they can be applied that way [11]. 

Cua, et al. [15] describe story plans with a SUMO-based knowledge representation of a 
narrative.  This is similar to the development of scenarios such as we are proposing.  However, Cua 
et al. stopped short of executing the plans it developed. 

Parts, Inputs and Outputs:  Potentially, structured descriptions could be developed for 
complex objects [4, 13, 31, 35] such as Systems and Devices.  These complex objects are 
collections of interacting Mechanisms and Parts [3], which may be described with some 
combination of behavior, structure, and functionality.  Because a System or Device is a unit, we 
know that its parts move with it as it moves in the microworld.  Systems also have inputs and 
outputs.  For example, gasoline is required for the operation of a gasoline Engine but is not part of 
the Engine; it is an input; exhaust is an output. 

6 SUO-KIF uses different terminology from object-oriented systems.  For instance, a SUMO class is 
part of the Structural Ontology rather than a programming language object.  We implemented the instances 
of elements of the Structural Ontology as Python classes while recognizing the distinction between types of 
classes.  Instances associated with those elements were built directly with the Python code associated with 
the class. 
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Rules and Microworlds:  In our Python version of SUMO, rules were implemented as 
methods associated with classes.  We take rules, such as the description of the Bakery in Figure 1, 
as making assertions about Entities that exist in a microworld.  A microworld provides a frame 
(i.e., context or scope) for all instantiated objects in the simulation.  In our models, the microworld 
is a spatial region in which objects are located.  Potentially, the microworld could have properties 
of its own (e.g., gravity, air).  Moreover, the microworld may be divided in spatial-temporal sub-
regions. 

Because of the rule in Figure 1, we know that a Bakery must sell edible baked goods.  If 
Bakeries do Baking, we assume that they have Ovens because an additional Rule associated with 
Baking requires that there be one.  However, the SUMO rules do not always provide enough 
information about the implemented models.  Future work is needed to support greater consistency. 

Validation:  Because our focus is on description more than inference, we did not implement 
advanced inference techniques such as backtracking.  Rather, we focused on whether the network 
had conflicts and Relationships such as transitions were applied.7  As with many systems of linked 
data, not all Relationships are expressed explicitly; some are implied by other relationships.  Thus, 
we activated Relationships and applied any associated rules to build a set of inferred relationships.  
We then examined for conflicts such as connections of logically contradictory attributes such as a 
device being both On and Off simultaneously, or connections that are inconsistent with the model 
such as Combustion occurring with Exhaust gasses.8

Because we use run-time validations as guard conditions or contracts for transitions, and the 
transitions change the active entities and relationships, the networks of inference relationships may 
need to be reconstructed for every transition.  This is cumbersome, but the burden may be reduced.  
If a transition is repeating in an otherwise unchanging environment, it does not have to be 
revalidated in each cycle. 

4 Example: Engine Ignition Control Switch 

The first example describes a simple transition and its validation.  In this example, an Engine 
is alternately turned On and Off.  It follows the rule in Figure 2, implemented in Python code with 
one time interval (temporally) following another in the simulation.  TurningOn the engine breaks 
the relationship between the Engine and the EngineOff attribute and connects the EngineOn state 
to the Engine (cf., [6]).  The active relationships are managed with Python dictionaries.9  The 
transition is validated in several ways (see Section 3.2).  First, we extend the explicitly connected 
relationships with inferred relationships and check them for conflicts.  Then we apply probes to 
check for specific conflicts.  For instance, we check that only one Relationship is connected to 
EngineState as required by the partition of EngineOn and EngineOff attribute instances.  Other 
constraint probes could examine conflicts in location or behavior. 

5 Definitions 

Terms in ontologies are often accompanied by definitions.  However, those definitions are 
often ad hoc; it would seem desirable for definitions to be well-structured and expressed by the 
terms in the ontology.  [4] proposed a definition for a waterfall as a programmatic simulation based 
on ontology terms.  It described the interaction of entities implicitly associated with a waterfall 
such as water and a streambed.  A definition such as that in [4] could be compiled directly into the 
Python code for the simulations, to be applied whenever a waterfall object was instantiated.  Rules 
in the SUMO ontology may be considered definitions.  In fact, the SUMO ontology includes text 
documentation for each term that mirrors the axioms and rules. 

Lexical semantics describes how meaning is assigned to words.  It incorporates insights from 
computational linguistics, drawing from [23], which categorizes verbs according to their 

7 We also checked the validity of the domains of entities as they were instantiated into the model. 
8 A detailed model could determine that Combustion cannot occur without sufficient oxygen but we can 

apply a higher-level check without such detailed modeling. 
9 Larger networks could use JSON documents or even link to a NOSQL database such as MongoDB. 
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alternations, and from [18], which proposed a “generative semantics” based on semantic primitives.  
For example, SUMO supports CaseRoles such as agent and patient.  [1] proposed using Fillmore’s 
[32] frames.  Following DOLCE, BFO [19] applied Vendler’s analysis of the aspect of verbs [34].  
All these approaches are considered as part of the Event Structure of the verbs. 

Another approach to lexical semantics proposes a “generative lexicon”, in which meaning is 
assigned to words by compositionality, that is by a nuanced balancing of several factors [29, 30].  
Specifically, it proposes that there are four levels of semantic representation (Figure 3).  The 
Argument Structure is based on syntactic categories (e.g., direct objects).  The event Structure is as 
described above.  The Qualia are subdivided by Aristotle’s four types of causation (aitia).  Lexical 
Inheritance is the relationship to other words in the corpus.

Argument Structure Specification of number and type of logical arguments and how they are realized 
syntactically.

Event Structure Definition of the event type of a lexical item and a phrase.  Sorts include STATE, 
PROCESS, and TRANSITION, and events may have a subevent structure.

Qualia Modes of explanation.
Formal That which distinguishes it within a larger domain
Telic Its purpose and function10

Constitutive The relationship between an object and its constitutive parts
Agentive Factors involved in its origin or “bringing it about”

Lexical Inheritance Identification of how a lexical structure is related to other structures in the type lattice, 
and its contribution to the global organization of a lexicon.

Figure 3: Factors associated with the generative lexicon.  Comments on the right are from ([29] p61 and p76).

The four dimensions of the Qualia could be the basis for a structured dictionary schema to be 
used for structured knowledge.  Although they are developed for natural lexicons, these dimensions 
should also be useful for constructing ontologies.  While existing ontologies include some features 
of the Qualia, those are typically ad hoc rather than systematically structured.11  Further, the Qualia 
could, potentially, be incorporated into an ontology using rules such as those in Figures 1 and 2.  
In any event, any collection of definitions, rules, and ontologies should be more systematically 
developed and cross-referenced than is done in any resource currently available. 

We also envision what could be called a hyper-partonomy.  That would be a top-down graph 
for complex objects which combined a rich ontology with a partonomy.  As specific components 
are identified, the space of possible objects could be progressively constrained.  For instance, if we 
knew that a given object included a steering wheel, we could conclude that it is a type of motor 
vehicle.  If we then learned that it has a spark plug, we could narrow the possibilities to gasoline-
powered motor vehicles, and so on.  Moreover, the domains of associated Processes can be 
progressively refined. 

6 Example: 4-Stroke Engine with Limited Fuel 

As a second example implementation, we adapted and simplified the description of a 4-stroke 
gasoline engine from Cars.kif.  The engine is a type of system; the pistons may be considered its 
power sub-system.  A 4-stroke gasoline engine is highly predictable.  We model one piston with 
transitions through the four strokes (Intake, Compression, Combustion, and Exhaust).  We did not 
model the electrical subsystem. 

The piston, valves, fuel, spark plug, and crankshaft are included in the model.  As the 
simulation of the engine runs, fuel is consumed.12  In each cycle, the valves allow gasoline to enter 
and exhaust to exit the piston.  After each transition, the relationships among the components of 
the simulated piston are validated with procedures similar to those described in Section 4.  The 

10 The telic dimension is further broken down as direct or indirect ([29] p99-100).  Direct telic seems 
roughly analogous to Dispositions. 

11 [22] explored mining SUMO rules to enhance the Rich Event Ontology.  We believe that it could be 
more effective to incorporate the Rich Event Ontology as a component of the SUMO ontology. 

12 In several cases, we grouped parts together in Assemblies [4].  For instance, the Piston was composed 
of Piston head and Piston rod. 



6 

ignition switch (as described in Section 4) and piston run as separate threads.  When the simulated 
piston runs out of fuel, the engine stops.  The engine can also be halted if the ignition switch is 
turned off.  Thus, multiple conditions are checked at the beginning of each cycle (cf., [3]).  We 
supported focused testing of several other features.  In particular, we supported tests for each 
transition such as checking that the piston is in the compress position before the spark. 

7 Discussion 

7.1 The Model Layer 

Semantic models generalize instances.  They may include Model-level descriptions with 
constructs such as states that are not “real”, although we implicitly assert that those Model-level 
descriptors potentially could be fully explained within the model framework. 

Complex objects such as an engine could have “metadata” wrappers.  As specified in MILO, 
an Engine is a Transducer and a Transducer “is a device which is capable of converting one form 
of energy into another”.  Thus, descriptions reflect not only the interaction of its parts but also its 
inputs and outputs.13  We could also support the description of cross-granular processes such as the 
description of Combustion at both the molecular level and the higher-level effect of pushing the 
Piston down.  Finally, to the extent these models are state-based, techniques such as temporal model 
checking can be applied [14, 19]. 

7.2 Extending the SUMO Ontology 

While the SUMO ontology has broad coverage, there are many additional areas where it might 
be productively expanded.  Here, we consider briefly digital humanities and scientific research 
reports.  Other areas could include medicine, geology, and criminal justice. 

Digital Humanities:  YAGO-SUMO includes many facts about artists and painting but not 
much about the context of their lives and work [16].  If the Getty Research Institute’s Art and 
Architecture Thesaurus (AAT) were incorporated into SUMO, it could help support the 
implementation of that context [8]. 

Just as narrative scenarios can be developed for stories (e.g., [15]), we propose that they can 
be applied to the description of history.  For instance, we could provide a structured “community 
model” for the GangJin pottery village in 12th century Korea (Goryeo Dynasty) [7].  Such structured 
descriptions could be applied across all areas of digital history, even if there is less predictability 
about the causal relationships among the parts of a community than there is for an engine. 

Research Reports and Data Sets:  We have proposed that direct representation of scientific 
research reports replace traditional text-based research reports [2].  Scientific propositions are 
similar to logical axioms.  Indeed, the goal of science is to develop a consistent and efficient set of 
axioms and rules that cover natural phenomena.  Supporting evidence is observations that are 
shown to be consistent with the model. 

We should be able to develop rich knowledge management tools that could simulate the 
interaction of entities and even to “directly represent” entire research reports [3].  A broad ontology 
such as SUMO should be particularly helpful for organizing social science research data [5] and 
describing the high-level issues addressed in the introductions and conclusions of the research 
reports. 

7.3 Conclusion 

SUMO has an extensive ontology and is an impressive basis for research on inference for large 
knowledgebases.  In this paper, we have explored its potential for smaller-scale applications that 
do not focus primarily on complex inference.  We have demonstrated some initial steps to using 
the SUMO ontology as the basis for model-level descriptions which could then be applied to the 
description of instances.  We believe that by combining insights from simulation, knowledge 

13 In the case of Engines, this could include outputs such as Exhaust (see Section 5) as well as the 
rotation of the crankshaft. 
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representation, programming languages, argumentation, and linguistics, we can build a new 
generation of information management tools. 

References 

1. Allen, R.B. (2014) Frame-Based Models of Communities and their History, Histoinformatics, LNCS 
8359, 110-119, doi: 10.1007/978-3-642-55285-4_9

2. Allen, R.B. (2017) Rich Semantic Models and Knowledgebases for Highly-Structured Scientific 
Communication, arXiv: 1708.08423

3. Allen, R.B. (2018) Issues for Using Semantic Modeling to Represent Mechanisms.  arXiv: 1812.11431
4. Allen, R.B. (2019) Definitions and Semantic Simulations Based on Object-Oriented Analysis and 

Modeling, arXiv: 1912.13186
5. Allen, R.B. (2020) Metadata for Social Science Datasets, In Rich Search and Discovery for Research 

Datasets, J.I. Lane, I. Mulvany, and P. Nathan (eds.), Sage Publishing, 40-52, 
SocialScienceDatasets.pdf

6. Allen, R.B. & Jones, T. (2018) Toward Programming Rich Semantic Models, arXiv: 1805.11050
7. Allen, R.B. & Kim, Y.H. (2018) Semantic Modeling with Foundries, arXiv: 1801.00725
8. Allen, R.B. & Park, J.H. (2018) Coordinating and Integrating Faceted Classification with Rich Semantic 

Modeling, Workshop on Ontology and Rich Semantics, Singapore, arXiv:1809.09549
9. Álvez, J., Lucio, P., & Rigau, G. (2019) A Framework for the Evaluation of SUMO-Based Ontologies 

Using WordNet, IEEE Access, doi: 10.1109/ACCESS.2019.2904835
10. Arp, R., Smith, B., & Spear, A.D. (2015) Building Ontologies with Basic Formal Ontology, MIT Press, 

Cambridge, MA 
11. Bock, C. (2000) A More Object-Oriented State Machine, Journal of Object-Oriented Programming, 

12(8), statemachine.html
12. Borgo, S. & Masolo, C. (2009) Foundational Choices in DOLCE.  In Handbook on Ontologies, S. Staab 

& R. Studer (eds.), Springer, Berlin, 361-381 
13. Burger, A., Davidson, D., Yang, Y., & Baldock, R. (2004) Integrating Partonomic Hierarchies in 

Anatomy Ontologies, BMC Bioinformatics, 5:184.  doi: 10.1186/1471-2105-5-184
14. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.,& Veith, H. (2018) Model Checking (2nd  ed), MIT 

Press, Cambridge MA 
15. Cua J., Ong E., Manurung R., & Pease A. (2010) Representing story plans in SUMO.  In Proceedings 

of the NAACL HLT, Second Workshop on Computational Approaches to Linguistic Creativity, 
Association for Computational Linguistics, Los Angeles, 40-48, ACLweb: W10-0306/

16. de Melo, G., Suchanek, F., & Pease, A. (2008) Integrating YAGO into the Suggested Upper Merged 
Ontology Proceedings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI 
2008).  IEEE Computer Society, Los Alamitos, CA, yagosumo.pdf

17. Enache, R. (2010) Reasoning and Language Generation in the SUMO Ontology, Masters Thesis, 
http://publications.lib.chalmers.se/records/fulltext/116606.pdf

18. Genesereth, M., & Fikes, R. (1992) Knowledge Interchange Format, Version 3.0 Reference Manual". 
Report Logic-92-1, Stanford Logic Group Report. Stanford University, kif.pdf

19. Halpern, J.Y., & Vardi, M. (1991) Model Checking vs. Theorem Proving: A Manifesto, Artificial and 
Mathematical Theory of Computation:  Papers in Honor of John McCarthy, V. Lifschitz (ed.), 
Academic Press,   
doi: 10.1016/B978-0-12-450010-5.50015-3

20. Jackendoff, R. (1990) Semantic Structures, MIT Press, Cambridge MA
21. Jarrar, M. & Ceusters, W. (2017) Classifying Processes and Basic Formal Ontology.  Conference: 

International Conference on Biomedical Ontology (ICBO 2017), Newcastle, UK 
22. Kazeminejad, G., Bonial, C., Brown, S., & Palmer, M. (2018) Automatically Extracting Qualia Relations 

for the Rich Event Ontology, ACL, 2644-2652, ACLweb: C18-1224
23. Levin, B. (1993) English Verb Classes and Alternations: A Preliminary Investigation, University of 

Chicago Press, Chicago
24. McAllester, D.A. (1990) Truth Maintenance, Proceedings AAAI90,  AAAI90-164.pdf
25. Munoz, L., & Gruninger, M. (2016) Mapping and Verification of the Time Ontology in SUMO, FOIS, 

283, 109-122, doi: 10.3233/978-1-61499-660-6-109
26. Musen, M., Lewis, S., & Smith, B. (2006) Wrestling with SUMO and Bio-Ontologies, Nature 

Biotechnology, 24(1), 21–23, doi: 10.1038/nbt0106-21b
27. Niles, I. & Pease, A. (2001) Towards a Standard Upper Ontology, Conference: Proceedings of the 

international conference on Formal Ontology in Information Systems, doi: 10.1145/505168.505170
28. Pease, A., Ontology: A Practical Guide, Articulate Software Press, 2011 
29. Pustejovsky, J. (1995) The Generative Lexicon, MIT Press, Cambridge, MA 



8 

30. Pustejovsky, J. & Batiukova, O. (2019) The Lexicon, Cambridge University Press 
31. Rosse C., Mejino J.L, Modayur B.R., Jakobovits R., Hinshaw K.P., & Brinkley J.F. (1998) Motivation 

and Organizational Principles for Anatomical Knowledge Representation: The Digital Anatomist 
Symbolic Knowledge Base.  Journal of the American Medical Informatics Association, 5, 17-40 

32. Ruppenhofer, J., Ellsworth, M., Petruck, M.R.L., Johnson, C.R., Baker, C.F., & Scheffczyk, J., 
FrameNet II: Extended Theory and Practice.  fndrupal/the_book

33. Smith, B. (2005) Against Fantology, In Experience and Analysis, J.C. Marek & M.E. Reicher (eds.) 
HPT&ÖBV, Vienna, 153-170, philpapers.org/rec/SMIAF

34. Vendler, Z. (1957) Verbs and Times, Philosophical Review, 56, 143-160 
35. Winston, M.E., Chaffin, R., & Herrmann, D. (1987) A Taxonomy of Part-Whole Relations.  Cognitive 

Science, 11(4), 417–444, doi: 10.1207/s15516709cog1104_2


