
Architectures for Complex Semantic Models  

  

Robert B. Allen and Yoonmi Chu  
Department of Library and Information Science  

Yonsei University  
Seoul, Korea  

rballen@yonsei.ac.kr, yoonmichu@gmail.com 
 

Abstract— We have been exploring applications for complex 
semantic models such as rich-media science and history digital 
libraries.  In this paper, we consider in more detail a range of 
services which could be implemented as well as technical details 
for those implementations.  Many semantic tools are now 
available but these have rarely, if ever, been applied across 
broad and dynamic sets of complex instances.  Modeling 
detailed histories involves complex entities interacting in 
complex ways.  We consider architectures such as the Basic 
Formal Ontology and object-oriented models and we apply 
them in hybrid implementations using Jena/Java and Slate.  
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I. THE CHALLENGE OF COMPLEX DYNAMIC SEMANTIC 

MODELS  

Our goal is to provide a structured yet flexible framework 
for interaction with complex sets of instance data such as those 
from human and natural science.  There is a massive amount of 
such data.  Having a clear notion of structure seems essential 
for effectively mining text and other media.  We favor 
integrated models and thus go beyond loose linking of metadata.  

While we have explored applications in geology [10], much 
of our previous work has focused on descriptions of human 
history.  Specifically, we have been interested in information 
organization for the contents of digitized historical newspapers.  
As a strategy for that we have proposed modeling the 
community on which the newspaper reports [5, 6, 7].  When 
applied to individual towns, we term this strategy developing 
“community models” but the same issues apply to broader 
societal modeling and there are similar issues for natural 
science histories.  Our model-oriented approach emphasizes 
modeling content directly rather than providing links to 
information resources.  

Because we emphasize the description of content, we focus 
on qualitative models which are often based on natural 
language but data from other media may also be incorporated.  
In terms of information organization, we believe that the 
modeling of content rather than of the information objects that 
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hold the documents all for a new generation of digital libraries 
[7, 9].  

In terms of methods, our work touches many other streams 
of research.  Perhaps it is closest in spirit to the OpenClinical 
semantic knowledge management and decision support project 
in medicine. 1   OpenClinical builds on the OpenGALEN 2 
framework.  It is also related to work on requirements for 
information systems [30], agent models for business process 
engineering [41], and to intelligent tutoring systems [18].  

Here, we explore broad issues for developing representations 
for complex environments which change across time.  We start 
by considering services and the requirements for representations 
to support them.  We then consider approaches to implement 
those representations based on ontologies and object-oriented 
models.  Finally, we discuss cognitive and linguistic approaches 
and additional elements to support user interaction.  

 II.  SERVICES AND REQUIREMENTS  

We distinguish description from prediction.  While much 
work on modeling is directed at prediction for what might 
happen, following the traditional role of historians we are 
interested in accurately recording what happened.  Of course, we 
recognize that the evidence is not always a clear reflection of 
what happened and that it is quite possible for there to be more 
than one interpretation of the evidence.  In short, our primary 
approach is descriptive modeling by which we mean developing 
models which are useful for description rather than for 
prediction.  

We also distinguish description from explanation.  
Description might be limited to simple chronologies but 
explanation might go beyond that to include the attribution of 
causal relationships.  Furthermore, explanations may be adapted 
suit the audience.  We are interested in both description and 
explanation though in this paper we emphasize description since 
that can be modeled more directly.  Explanation requires more 
interpretation than prediction but explanation can provide more 
context and support for the descriptions.  

There are many higher-level services and applications such 
as scholarly analysis and hypothesis building, exploration of 
various versions, tutoring, guided tours, summarization, search 
and indexing, question answering, and digital gaming.  Yet 
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other options are whether users can get an overview across time 
or whether they step only forward through time.  And, the 
system should support multiple views of the same events.  
Moreover, there should be administrator tools and tool to 
“debug” models which show inconsistencies.  

Consider a possible interface to support the exploration of 
a community as described in a historical newspaper; users who 
are unfamiliar with the town might start with an overview of 
the history and context of the community.  Other users might 
be interested in a specific dimension (e.g., economic 
development, sports, religion, etc.) or maybe with specific 
people.  Ideally, the interface would provide personalized 
views for these different types of users.  The presentations 
could include automatically generated text and other types of 
context such as illustrations and maps.  Links to relevant 
evidence and versions should also be supported.  For some 
applications we might tolerate limited errors but advanced 
users should also be able to repair them.  

Supporting services requires varying mixes of 
representations and capabilities.  Some of the issues concern 
the development and management of the content.  For instance, 
we should be able to coordinate across many types of resources 
(e.g., multiple newspapers, oral histories, and data tables).  We 
should allow different types of inferences based on the type of 
evidence.  There are many levels of inference some are based 
on logical necessity and some are highly normative inferences 
(e.g., that a person breathes or eats).  However, other inferences 
seem so improbable that they can be accepted only with strong 
documentation.  A related issue is the extent to which the 
original descriptions are able to be faithfully represented within 
the structured framework.  Because we are open to human 
judgment in complex cases, we need to allow the ability to 
override system inferences.  

We distinguish between qualitative and numerical models.  
We have focused of qualitative models because they are close 
to text descriptions and there are an increasing number of tools 
to support them.  We believe the qualitative models can be 
extended to numerical and probabilistic representations later.  

 III.  ARCHITECTURES  

A. Ontologies  

We start with ontologies for representation of semantics. In 
addition to providing an overall structure, the ontologies 
support logic-based inferences.  

1) Upper Ontologies and the BFO  

Upper ontologies cover a range of high-level structures and 
concepts. Several upper ontologies have been proposed such as 
BFO, SUMO, and DOLCE.  The BFO (Basic Formal Ontology) 
because it is relatively well developed and because it is a 
“realist” ontology.  We believe that basic histories are also 
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largely “realist” and we have proposed applying BFO to full-
text and rich media digital libraries [9, 14].  As a result of this 
approach, BFO describes the world with universals rather than 
with concepts.  BFO proposes a hierarchy of entities which are 
divided into SNAP and SPAN [20].  These are 3D (Continuants) 
and 4D (Occurrents) approaches respectively.   
SNAP universals are further divided as Dependent Continuants 
and Independent Continuants. SPAN Occurrents allow changes 
across time.  

Below the top level, domain ontologies may be based on the 
typology of entities specified by the BFO.  An especially wide 
range of ontologies based on BFO have been developed in 
biology.3 Domain ontologies are themselves sometimes divided 
into several levels of detail of domain ontologies ranging from 
“upper domain ontologies” to more focused ontologies.  

2) OWL  

OWL, the Web Ontology Language, is the well-known 
formalism for specifying ontologies along with constraints and 
axioms associated with those ontologies.  OWL is based on RDF 
which is composed of triples. While there are proposals for 
allowing n-ary relationships 4  those are not standard parts of 
OWL.  In addition, OWL ontology-based development 
environments support a variety of inference engines.  Typically, 
the inferences are based on properties of RDFS and OWL 
relationships such as whether they show transitivity.  Given such 
properties, the inference engines can find relations that were not 
explicitly stated.  There are several levels of OWL and for some 
of these no robust general purpose inference engine has been 
developed. 

3) Relationships between Entities  

Entities in ontologies are connected by relationships.  Thus, 
the sets relationships are integral to the utility of the ontology 
although the close connection between the two is often not 
recognized.  The Relationship Ontology (RO)5 is closely, though 
not totally, coordinated with BFO.  Relationships such as is_A, 
part_Of, and instance_Of are particularly noteworthy.  Is_A is 
often associated with inheritance. Part_Of is associated with 
complex entities (see Section 4).  As for instances, while 
ontologies are often considered to emphasize the universals 
associated with a domain, they can potentially be used to provide 
a knowledge structure for instances.  Indeed, a distinction is 
commonly made between T-boxes and A-boxes.  The “T” refers 
to “terminology” (i.e., statements with universals) in a domain 
while the “A” refers to “assertions” (i.e., statements or facts 
about instances). 6   In addition to specifying relationships 
between entities with triples, there are several ways to 
implement constraints and rules such as axioms and rule 
languages.  

Sometimes SNAP and SPAN are treated as different 
ontologies and they are said to be linked by a distinct set of 

6 It is possible to have assertions about the relationship of 
universals but for A-boxes there the assertions are about 
instances.  For an instance every attribute would have a  



Trans-ontological and meta-ontological “signatures” rather 
than relationships [43].  However, more recently, SNAP and 
SPAN are considered as sub-ontologies rather than separate.  

4) Time, Events, Processes, Verbs, and State Changes  

The representation of time, processes, and events with 
ontology languages is a continuing controversy (e.g., [21, 
28]).  In BFO a Process is an Occurrent which is ongoing 
activity (e.g., running).7  Processes often occur in chains.  In 
biology an organism goes through developmental stages.  
Even running at different speeds, if explicitly acknowledged, 
may be considered a chain of distinct processes.  For some 
processes which follow regular patterns, such as the beating 
of a heart, Process Profiles may be developed [44].  We also 
identify Procedures which are a chain of Processes and 
which implement a specified sequence of state changes.  For 
instance, chemical reactions may be seen as Procedure.  
There can be instances of a chemical reaction and also 
abstraction of the reactions according to families of reactants.  

For dynamic environments which are often described 
with text, the representation of actions with verbs is central 
issue.  In some cases verbs are related to the relationships 
which link entities but those relationships are not verbs.  For 
a mother to give birth implies the relationship MotherOf but 
the action is different from the relationship.  

BFO also has Occurrent Processurals for initiating a 
Process and ending a Process.  These might be used for 
describing state changes.  However, more complex 
structures are needed to fully represent verbs because many 
verbs connect multiple entities.  For instance, the FrameNet 
project uses frames to implements many concepts including 
state-changing verbs [7].8  Perhaps structures such as named 
graphs  

                                                                                                  

specific value (e.g., "red", "green", or "unspecified").  For a 
universal the that same slot might set the domain of the 
possible values as "red", "green", or "unspecified" but there 
would not be any value for that attribute.  

7 This usage for the term Process can be confusing.  
In BFO, a Process is more like the present participle of a 
verb than an ongoing procedure or workflow.  

8 While we may explore the theory of frame 
semantics later, our immediate application uses the 
FrameNet corpus only as a convenient resource.  The verb-
based FrameNet frames provide a useful set of “methods” 
(in the object-oriented sense.  Natural language verb 
hierarchies provide a type of inheritance.  However not all 
verbs and not all verb senses are covered by the current 
FrameNet corpus.  Moreover, with structured representation, 
we may want to develop methods that go beyond state-
change verbs in natural language.  

 

 

and frames could be used to enhance OWL but adding such 
complex structures would necessarily undermine the virtue of 
the simplicity of triples.  

While ontologies may describe state changes, they do not 
actually implement them.  Our explicit modeling of state 
changes differentiates our work from others on representing 
human histories (e.g., [28, 33]).  Thus, we discuss programming 
languages below (Section 3.B) when we focus on models of 
dynamic situations.  OWL-related projects such as SPIN and 
OWL-S support state changes although those are for restricted 
applications.  

5) Potential of the BFO for Modeling Complex Social 
Situations  

We have been exploring the application of BFO for the 
description of complex dynamic environments such as 
communities [14].  BFO seems particularly appropriate because 
it supports both 3D and 4D models, BFO is widely used in 
biology, and is relatively well developed but it has not been 
applied previously in many areas beyond biology.  While some 
entities in communities (e.g., families) are nuanced social 
objects, many other entities such as those which appear in 
newspapers are relatively mundane (at least to the extent that 
they are typically described in the newspapers).  In addition, [14] 
explored the application of BFO, Processes, and Procedures in a 
description of the Roman Constitution as it is described in 
Gibbon’s “The Decline and Fall of the Roman Empire”.  

B. Object-Oriented Programming Languages  

While ontologies can readily describe individual events, 
models of complex environments based on such descriptions 
will be difficult to implement.  It might be possible to create 
different copies of entities for every different state and then 
update pointers to them but there would be so many 
combinations that this does not seem practical on a large scale.  
Its implementation would likely end up as equivalent to a state-
based program (cf., [35]).  Remarkably, state-based 
programming languages, in particular, object-oriented 
programming languages have had relatively little impact on 
ontological descriptions.  This may be because programming 
languages are often associated with simulation rather than 
description but, as discussed earlier, the boundary between 
description and modeling is fuzzy and, indeed, we seek to bridge 
them with descriptive models. 

Several concepts are bundled together under the rubric of 
object-orientation (e.g., [15, 21]).  Among the central concepts 
is the notion of message passing as a way objects communicate 
and the related notion the close association of methods with 
specific classes.  Another important concept is abstraction in 
which common aspects of functionality are abstracted into 
higher-level objects.  Ideally, these techniques should lead to 
better designed, more reusable, and more manageable code.  
They have also been adopted for Business Process Engineering 
(BPE) to describe and analyze the entities in well-structured 
organizations.  The Unified Modeling Language (UML) is a set 
of interlocking sub-languages which describe the entities and 
processes underlying a complex environment.  However, UML 



is not a true programming language; there is no way to execute 
a set of UML statements.  Research specification languages such 
as TELOS [30] make an even more direct link to requirements. 

There is a natural relationship between object-oriented 
approaches and well-articulated semantic structures such as 
those in ontologies [15].  Indeed, the Object-Management 
Group (OMG) 7  has developed a conceptual framework for 
objects in object-oriented models.  Beyond design, object-
oriented languages support dynamical modeling.  While Java 
and C++ are the best known object-oriented languages, they 
have several features which have been implemented primarily 
to support efficient coding.  JavaScript and Smalltalk are other 
well-known object-oriented languages.  As described above, 
object-oriented approaches associate data and methods with 
specific classes.  In addition, those data and methods can be 
inherited and specialized from more abstract classes (objects).  
Inheritance can be simply a data compression device but it 
often reflects a semantic class hierarchy.  In order for the 
program to be executed, the classes must be instantiated.  
Object-oriented languages can also support part_Of 
relationships by instantiating the parts within the parent classes.  
Depending on the whether the language has early or late 
binding, the parts will have to be fully specified ahead of time 
or they may be specified only at run-time.  

C. Application-Driven Representations  

While ontologies and programming languages provide 
detailed frameworks from which we may build complex 
structures, some application have developed ad hoc 
representations.  Examples of the latter include the 
representations used in digital games [38], in narrative [8, 16], 
in intelligent tutoring systems [18], and in agent-based models 
for business processes [41].  There are also similarities to many 
types of semantic linguistic processing systems such as those 
which implement question answering [26], summarization [30], 
and discourse [27].  

 IV.  COMPLEX ENTITIES  

Beyond the traditional view of entities in data modeling in 
which they are relatively simple and associated with a specific 
attributes, the models we consider are composed of many layers 
of sub-entities and all of these interact in complex ways and 
many evolve through time.  Different types of representations 
may be applied to match the requirements of different 
applications.  Indeed, purely qualitative models have been 
employed by the mental modeling community for describing 
the closed system of steam boiler (e.g., [23]) and that level of 
description may be adequate for some of our applications.  

A. Structure of Complex Entities  

A few types of complex entities have been considered by the 
BFO based on principles of “causal unity” [43].  These 
principles include internal physical forces and an engineered 
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inheritance and attribution of causation are due to a failure to 

assembly of components.  We believe there are several other 
important sources of unity such as interlocking functionalities.  
For object-oriented approaches, complex entities are roughly 
comparable to objects.  We might regard the functioning of some 
of the elements as a type of “encapsulation”.  Part_Of 
relationships are central to both approaches.  However, there are 
many nuances in the way such relationships are used.  For 
instance, a proper_Part_Of says that an entity cannot be part of 
itself.  And, a direct_Part_Of is an immediate part_Of the higher 
level.  In addition, some proposals have been made to model 
layers of granularity [36].  This matches the common notions 
about layers in an organism such as its organs or cells.  

Because complex entities are made up several sub-entities 
their attributes can be can be interdependent.  If the entities 
physically connected, they will all change location at the same 
time.  Or, if they are linked in pathway, they may all be active 
together but only when that pathway is active.  Thus, the 
description of the complex attributes needs to be coordinated.8  

Because a complex entity may have a great many subentities 
(e.g., molecules of water in a glass of water) we will not be able 
to model them all.  Thus, we might focus on only one or two of 
them as examples and suggest that their behavior generalizes to 
all the others but the descriptive system needs discourse 
structures (Section 7.D) to handle that in a consistent way.  In 
addition, when a complex entity has several layers we may only 
deal with entities in one or two layers while ignoring the entities 
at the lower layers.  In some cases, the lower layers may be 
composed of qualitatively different types of entities.  For 
instance, a car engine may be run by gasoline, diesel fuel, or 
electricity and we may not know or care which one it is.  In 
addition, we may have expectations about the low-level details 
but not be overly surprised if turns out to be something different 
(see the discussion of expectations in Section 7.C).  

B. Complex Entities as Systems  

While systems may be static, we are most interested in 
systems which are dynamic – those which have processes and 
procedures which fulfill specific roles and functions (see [14]).  
Ultimately, as part of our understanding of complex entities, we 
need to incorporate insights from System Dynamics, General 
Systems Theory, and Complex Adaptive Systems (CAS) into 
our models.  

As systems, complex entities may have internal dynamics.  
In some cases these dynamics are largely independent from 
interaction with other complex entities.  For instance, a person 
breaths without any external stimulus and in most cases it does 
not affect our models.  Other internal processes such as a 
person’s hunger or the need to sleep may have more overt 
behavioral manifestations and may need to be explicitly 
modeled.  While individuals can be viewed as complex entities, 
at another layer groups of people form communities and those 
communities are complex entities.  Some aspects of 

differentiate among the effects on parts or functions of a 
complex entity.  



communities are relatively routine and well structured.  We 
believe these can be well modeled by ontologies (e.g., [14]) and 
in some cases by agent-based models (e.g., [41]).  Other aspects 
such as the relationships between people in families are 
idiosyncratic and hard to model.  Moreover, just as there are a 
variety of approaches to account for the behavior of individuals, 
there are a variety of theories to explain the social structures such 
as institutions.  To add to the complexity, communities evolve 
as knowledge, technology, and culture change.  Moreover, there 
are many social activities beyond communities such interaction 
in cities, in mass social groups, and as part of nations.  
Ultimately, our models may be extended to apply to all of them.  

C. Instances of Complex Structures  

The usual notion of instantiation can be difficult to apply for 
complex entities.  We may say that a town exists (i.e., instantiate 
a high-level description) without knowing much about it.  Thus, 
we need partial instantiations.  

 V.  HYBRID IMPLEMENTATIONS  

We seek to bridge the traditional distinctions between 
ontologies and programming languages (cf., [35]).  In histories 
of complex scenarios, ontologies can have two levels of 
description.  The descriptions available in T-Boxes can be part 
of broad knowledge structures and can have an effect across a 
large number of entities or methods as when a new technology 
is introduced.  The A-Boxes could state a location or the roles 
played by an individual.  

An object-oriented program applies classes to instances. 
Effectively, the entire program is the dynamic model of history. 
Here, we explore two approaches.  The first is based on Jena9 
which is a Java-based library which allows the implementation 
and validation of sets of RDFS statements and OWL.  The 
second architecture uses the Slate object-oriented language.  

A. Jena Java  

Jena allows the developer to add, delete, and modify RDFS 
and OWL statements in an ontology model.  In addition, Jena 
provides a flexible framework for supporting inference engines 
reasoners for the validation of the models and querying the 
models.  However, these tools have varying restrictions and 
capabilities.  For instance, the low-level Jena RDFS Reasoner 
creates an Inference Model that supports indexing inheritance.  
However, the OWL Reasonser is needed to make inferences 
using even simple part_Of relationships. SPARQL queries are 
implemented with Jena ARQ.  

Jena statements can be intermingled with Java statements, 
and we can use the Java to manually create and modify entire 
ontologies through Jena.  We can also use methods implemented 
in Java to make the state change.  This is related to the approach 
introduced by [6].  Both the manually created and the 
programmatically updated ontologies can be validated using the 
Jena inference tools.  We envision a cyclic process of 

                                                           
9https://jena.apache.org/  

implementing the state change(s) to the 4D entities followed by 
validation of the resulting ontology.  

Moreover, just as we extend by OWL in building ontologies, 
we can enhance or replace the inference engines. The Jena 
reasoners work by expanding all combinations of statements 
allowed by the relationships.  A major problem is that this 
readily leads to a combinatoric explosion (too many 
combinations).  We can control the scope of the validation and 
inferences to restricted set of statements (see Section 6.C).  
Similarly, tests of specific conditions and constraints could be 
implemented.10  

B. Slate 

The second hybrid model we consider is based on Slate 
which is a research prototype object-oriented language [40] 
which is descended from Smalltalk.  Slate is known as a 
relatively pure implementation of object-oriented principles.  
Potentially, the strength of its approach to object-orientation will 
make it a better platform than Jena/Java.  However, there is no 
RDFS/OWL library comparable to Jena.  Indeed, while a basic 
set of programming tools has been implemented [37], the 
development environment is not very extensive. 

Slate is an interpreted language with dynamic binding at 
runtime.  Slate supports prototypes for inheritance and it allows 
multiple inheritance.  Thus, Slate programs are extremely 
reconfigurable.  In addition, Slate allows multiple dispatch 
which allows methods to be triggered according to the “roles” of 
entities.  Multiple dispatch may be important for complex 
interactions such as for multi-agent interactions. This role-
matching makes it somewhat like production systems which 
have been widely used in cognitive modeling. Another 
potentially useful feature of Slate is that macros may be applied 
across entities in complex objects [32] such as are common for 
structures models of complex environments (e.g., [1]).  

Several features of the underlying object-oriented program 
are suitable interacting with structured models such as we 
explore in this paper.  For instance, methods associated with an 
object can be readily updated.  Thus, if a person acquires a new 
role and that role introduces new privileges and responsibilities, 
the methods associated with those can readily linked to the entity.  
A major drawback for Slate is that there is no RDFS or OWL 
support.  A library comparable to Jena would have to be 
developed.  Relationships would need to be introduced to link 
the classes and then validation and inferencing tools built.  

 VI.  COGNITIVE AND LINGUSTIC PROCESSES  

Human cognition language use has some effective, though 
not perfect, semantic models.  We examine here some of the 
possibilities for employing some aspects of those 
representations in machine-based models bearing in mind the 
varying requirements for different tasks discussed at the 
beginning of the paper. 

10 Tests of pre-conditions and post-conditions such as those 

in the Eiffel programming language might be helpful.  



While the BFO is a realist approach, many of the issues are 
related to human linguistic and cognitive representations.  The 
structure of natural language is closely intertwined with human 
information processing (e.g., [24]).  Moreover, accounts of 
mental processes are reported in texts and may need to be 
represented.  Some of the insights of DOLCE might be used 
and, perhaps, blended with BFO’s approach to incorporate 
cognitive representations [22].  

A. Symbol Processing and Categorization  

There is considerable evidence that human beings use 
distributed representations rather than processing traditional 
symbols such as we have emphasized here.  While we believe 
that there is a sub-symbolic layer in human cognition and that 
may be useful to model to determine nuances such as word 
senses, it appears a great deal can be done with the 
consistencies in the symbol layer.  A further debate concerns 
prototype approaches to categories and is discussed below 
(Section 7.C).  

B. Analogies  

Although analogy is seen as a cognitive process [17], when 
ontologies such as the BFO are coupled with abstraction and 
inheritance as models, they should be compatible with symbol-
based accounts of the use of analogies.  

C. Scoping, Episodes, and Assemblies  

Presumably people do not consider all of their world 
knowledge when making judgments or checking plausibility.  
After all, a person’s total world knowledge is enormous and 
considering all possible connections would result in a 
combinatoric explosion.  The downside, however, is that 
people’s knowledge may be siloed and that some unexpected 
remote connection actually has an effect.  

Scoping and limiting options is well recognized in models 
of natural language understanding [20].  Similarly, events in 
stories are grouped into episodes [16].  There may also be fluid 
assembles of entities (e.g., people on a dance floor) which 
function as an ad hoc entity.  

For interacting with the broad synthesized entity-event 
fabrics we have been considering, it will be helpful to 
implement some sort of scoping tags which control the level of 
processing of collections of related instances but limits broader 
processing.  

D. Goals versus Subsumption  

Much information processing in artificial intelligence is 
based on establishing goals attempting to follow them.  We tend 
to believe that goal-based reasoning is often unnecessary and 
could be eliminated with Occam’s razor in favor of subsumption 
and a behaviorist approach.  Nonetheless a wide variety of goal-
based models and some of those may be useful.  For instance, 
[13] proposed the GOMS (Goals, Operators, Methods, and 
Selection Rules) model.  This was developed to describe HCI 
tasks but it might be considered as an approach to specifying the 
activities which compose processes.  

E. Modeling Natural Language  

We can move from modeling specific components to a 
unified framework for describing dynamic environments with 
interacting complex entities.  Taken together, research on 
advanced information structures, research programming 
languages, and linguistics research on frames and on discourse 
provide a useful foundation for modeling semantic interactions.  
Thus, natural language can be modeled with complex entities 
acted on by complex state-change methods.  Moreover, the 
entire set of entities and state changes are shaped by human 
activities and cultural context.  

VII. EXPLANATIONS  

Explanation attempts to answer the question as to why 
something happened [34].  While we have emphasized 
description over explanation, ultimately the two need to be 
closely coordinated.  Robust explanation of everything in history 
is not feasible but we can consider the issues and apply them to 
narrower cases.  

A. Causation  

Explanation is closely associated with the notion of causation 
[12].  Effective explanation may be personalized for individuals 
and can be integral to tutoring systems (e.g., [18]).  Causation is 
controversial notion in some circles. Yet, we believe that 
causation is integral to narrative [2] and scientific [10] 
explanations.  In addition, the notion of causation is [not] well 
accepted by the BFO.  One issue about causation is the difficulty 
of determining “the cause” from a set of causal factors.  Picking 
a single cause often depends assumptions about what which was 
the most exceptional or unexpected factor and that can be very 
subjective.  Causal factors can be linked into threads and may be 
useful for generating narratives plots and explanations along 
with other contextual information.  Interwoven narrative threads 
may help to reinforce the fabric and to provide multiple 
constraints.  Because causation implies a temporal sequence, 
perhaps the relative order is more important than absolute time 
stamps.  

B. Theory of Mind  

Some complex entities have especially complex internal 
states which are difficult to observe.  To the extent that we 
attempt to explanations of the behavior of such complex we need 
to attribute mental states.  In judging such internal states, we may 
apply a “theory of mind” [11] about cognitive processes.  In 
some cases, this may be based on principles such as information 
processing with bounded rationality.  In other cases, it may be 
more of a folk psychology.  In still other cases, we may model 
what a person says about their mental state.  

C. Prototypes, Expectations, and Constraints  

While we do not know exactly how people represent 
concepts in the world there is considerable evidence that they 
develop prototypes (e.g., [39]) and their reasoning depends on 
expectations.  While we may know that an entity is an 
automobile, we may have expectations about many details 
about it but not be sure.  Similarly, we may know in general 
terms that an event occurred but not know many details about 



it.  If we are explaining the reasoning and decision processes of 
agents, we may need to model their mental events and 
expectations.  Cognitive prototypes and concepts are not 
directly supported by BFO’s realist entities. Although they can 
be modeled indirectly with BFO, this is cumbersome.  A related 
issue is the extent to which we use probabilities (modal logic) 
to generate explanations.  

Explanations often explain why something happened but 
they may also try to explain why something did not happen.  To 
the extent that we want to include such explanations into our 
models, we need to include constraints.  Representing all 
possible constraints (i.e., context) in a general way is a daunting 
prospect but some limited constraints can be wired-in and used 
for limited inference.  

D. Evidence for Claims and Assertions, Argumentation, and  
Extended Composite Hypertexts  

There several types of assertions.  Some are logical, some 
may be based on expectations, and some based on reports by 
observers.  The latter would refer to entities and events which 
are themselves part of the fabric.  Metadata are usually 
considered to be assertions about information resources but in 
a knowledge-base, each assertion can have its own metadata.  

In previous work (e.g., [2, 6]) we discussed the need for 
discourse tags and for supporting those discourse tags with 
composite hypertexts.  The broad range of applications 
(Section 2) along with the combination the complex structures 
we consider allows us to extend traditional approaches to 
composite hypertexts.  Most previous work on composite 
hypertext systems have focused on simple composites such as 
guided tours or supporting argumentation with a small number 
of discourse tags.  We envision families of broader 
combinations of composite models.  For instance, we might 
introduce branching, personalization, and contextual 
annotations to guided tours.  Similarly, we might develop 
extended argumentation systems.  

Potentially, all assertions are falsifiable and need to be 
supported by evidence and can be disputed.  For instance, 
generalizations are assertions about a set of instance entities or 
events.  A generalization states that there is a commonality 
among the entities that is not part of the definition of those 
entities.   Such assertions may need to be supported by 
structured argumentation which might explain away exceptions 
and challenges to the evidence.  

Rhetorical structures such as the nucleus and satellites 
described in Rhetorical Structure Theory [27] may be considered 
as conceptual units (Section 6.C).  Systems of XML tags have 
been developed for these but they have not been fully integrated 
into ontologies.  

VIII. DISCUSSION  

We have emphasized entities which are complex, dynamic, 
and instantiated.  These entities may interact with others, 
perhaps like agent-based models.  In addition, the complex 
entities can be embedded as collections of complex entities (e.g., 

as part of a community or a society).  These are far more 
complex – often multi-layered -than entities which are usually 
considered in data modeling.  Indeed, there could be a single top-
level “history-of-the-universe entity” which would be an 
Occurrent temporal region.  Potentially, this would encompass 
all physical and social events.  It is debatable whether it would 
also include claims or scientific laws (e.g., that the speed of light 
cannot be exceeded) and definitions.  These may be seen 
absolute and existing outside of history but perhaps even they 
could be included.  While we believe strongly that the speed of 
light cannot be exceeded, that remains an empirical conclusion.  

A significant issue for modeling with the BFO is the large 
number of different entities which must be identified.  Even 
scales such the temperature are considered qualitatively, each 
gradation is represented by a different entity.  Similarly, each 
different chain of events may be a different entity.  Indeed, ad 
hoc groups of interacting individuals may be thought of as 
distinct entities.  Yet, the new ontologies may be only slightly 
different from previous versions so an ontology management 
framework might be used rather than developing separate 
ontologies.  Because we allow many versions and views of the 
ontologies, and because they apply to dynamic situations, we 
need policies and tools for managing them.  

Potentially this work could provide a common framework for 
the range of advanced applications described in the introduction.  
While we have focused on natural and social histories, the topics 
discussed in this paper may apply more broadly to semantic 
representations involving natural language.  
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