An Interface for Navigating Clustered Document Sets

Returned by Queries

Robert B. Allen, Pascal Obry, and Michael Littman

Bellcore

MRE 2A367
445 South Street
Morristown, NJ 07960 USA

{rba, obry, mlittman }@bellcore.com

ABSTRACT

An interface has been implemented for exploring the
structure of document sets returned in response to a
query. The interface allows a user to find subsets of doc-
uments that are especially relevant to the query through
interaction with an interactive dendrogram which dis-
plays a hierarchical clustering of the documents. Dy-
namic lists of document titles are interlocked with the
dendrogram to provide detail of the clusters being viewed
by the user. For efficiency, the interface has been imple-
mented in several parallel and distributed computation
environments and has been applied to retrieval of ency-

clopedia articles and news stories.

KEYWORDS

Clustering, information retrieval, interfaces.

1. INTRODUCTION

Classical information retrieval systems are based on the
idea that each document in a collection can be compared
to a user’s query, scored as to its similarity, and dis-
played in similarity-sorted order. However, this linear
sorting may obscure structure among the documents.
For instance, the titles of the top 15 encyclopedia [1]
articles returned by a latent semantic indexing search
(LSI) [5] for the query “Tell about scientific studies of

air pressure” were:

Proceedings ACM COOCS:

Conference on Organizational Computing Systems,
Milpitas, CA, Nov. 1993,

pages 166-171.

Copyright ACM

bellows

front

air conditioning
whirlwind

air force

compressor

air mass

fog

pneumatic systems
Billy Mitchell

Strategic Air Command
United States Air Force Academy
inversion

mirage (image)

foehn.

Several of the articles such as bellows and compressor
focus on devices which produce air pressure. Other ar-
ticles seem to relate to weather, while still others re-
flect the semantic confusion between air pressure and
air force. Finally, some articles such as foehn are simply
obscure and their appearance in the sorted list carries
no information for most people. However, seeing foehn
grouped with whirlwind and fog might lead us to suspect
that it weather related (in fact it is a type of mountain
wind). Clearly, some type of simple categorization could
help separate potentially relevant from clearly irrelevant

articles.

With the availability of powerful workstations and par-
allel computers, it is possible to use a variety of methods
to find and visualize structure in similarities between
the documents of a return set. We have explored classi-
cal Torgerson-Young multidimensional scaling, with in-
consistent results, and Kohonen nets [8], which have
given some good results but are are still computation-
ally expensive and may not scale well. This paper doc-
uments the use of hierarchical clustering for presenting
the structure of a retrieved set of documents. Hierar-
chical clustering has the advantage that it is less com-

putationally expensive and lends itself to relatively easy

| e

sclentific studies of air pressure

y

ult, Claire L,
nes of Apollonia

b
B-52 Stratofart hunidity

156 docunents <nar 244 docunents

air nass

Foshn
Diogenes of Apollenia

Figure 1: Cluster Interface for Encyclopedia.

presentation in an interactive interface. Clustering is a
fairly common tool in information retrieval and has been
used frequently to organize entire document collections
for retrieval [12], as well as to organize return sets to

queries about software modules [9].

Interfaces for displaying hierarchical structure have been
developed in a variety of contexts such as descending
menus and hypertext displays. Menu-based interfaces
are often not suitable for trees resulting from statistical
clustering because meaningful labels are not available
(see Section 3.4). Crouch et al. [3] describe a Macintosh
interface for browsing a static document clustering, but
it seems to be useful for only a small corpus. Many class-
hierarchy browsers (e.g., [2]) provide interfaces for nav-
igating simple hierarchies. However, we do not feel that
existing hypertext browsers are well suited for rapidly

sorting through a large number of documents.

This paper introduces an interface for browsing relations
among documents as derived by hierarchical clustering
of returned document sets. The Motif X-windows in-
terface, as depicted in Figure 1, consists of four major
windows: the query window (upper left, wherej the user
types free text queries for the system to process), the in-
teractive dendrogram, the subtree document lists, and
the text window and lists of proximal documents (all
of which are described in more detail in the following

sections).

The main concepts demonstrated by this interface are:
(a) The interlocking functionality of graphics and text
windows. (b) The use of the a dendrogram as a highly
structured map of the document collection (the lack
of which contributes to disorientation in hypertext sys-
tems). (c) Logical zooming [11] within subtrees of the
dendrogram. This provides detail without a loss of global

context.

2. INTERFACE COMPONENTS

In a typical interaction, a user enters a query into the
system and the similarity between that query and all
documents is computed. A fraction of the documents,
those with the highest similarity to the query, become
the return set and are compared with one another to
identify structure between the documents. The system
computes a hierarchical clustering of the returned doc-
uments and presents the resulting tree (dendrogram) to
the user. Briefly, hierarchical clustering takes a matrix
of distances between objects (in this case, similarity be-
tween returned documents), and creates a binary tree
[6] in which similar documents are joined low in the tree
and less related documents are not joined until higher
in the tree. In this application, the leaves of the tree
are individual documents and the root of the tree is the
coarsest level of structure identified in the return set.
The set of returned documents and the clustering tree

itself are the main focus of the interface.

Figure 2: Interface for AP News Stories.

Two concepts are fundamental to the presentation of the
returned documents. At any given time there is a no-
tion of a “selected document” and a “selected subtree.”
These represent a particular document and a particular
portion of the tree that the user would like to focus on.
Initially, the selected subtree is the entire return set and
the selected document is the one with the highest sim-
ilarity to the query, but this is quickly changed by the

user in the act of browsing.

2.1. Interactive Dendrogram

In one window in the interface, the clustering tree itself
is presented to give the user a sense of the overall struc-
ture of the return set. In the context of a given query,
the display of the tree is static, but colors are used to
indicate the selected subtree (a horizontal red bar across
the root of that subtree) and the selected document (a
red path from the root of the tree to the leaf represent-
ing that document). In addition, the highest similarity
document within the selected subtree is highlighted by
a green path from the root of the subtree to the leaf
representing that document. At any time, the user, by
clicking on a junction (i.e., the root of a subtree), can
make a di erent subtree the selected subtree causing the

display to be updated accordingly.

Figure 2 gives an example of the interface applied to
viewing a collection of Associated ress News Stories.
Here indicators at the bottom of the dendrogram show
the similarity of each article to the query. The length of

these indicators is proportional to the article’s similar-

ity to the query (longer bars show articles that are close
to the query). These bars may indicate a concentra-
tion of relevant articles and they e ectively add a third

dimension to the dendrogram.

2.2. Subtree Document Lists

The window on the bottom left displays two lists of ar-
ticle titles, one for each subtree of the selected subtree.
In each list, the articles are ordered by their proximity
to the query with the article with the highest similarity
highlighted initially. At the top of each list is a “split”
button, which makes that subtree the selected subtree
and therefore splits it further. This function is simi-
lar to clicking on the dendrogram and provides the user
with more information about a part of the tree he she
deems relevant. Of course clicking on dendrogram at
the junction above the selected subtree will “un-split”
the lists. Clicking on the title of a document makes that
document the selected document, once again giving the
user an opportunity to get more detail about a piece of

relevant information.

2.3. Text Window and Lists of Proximal Documents

The window on the top right provides a “logical zoom”
of the selected document. That is, the selected docu-
ment, presumably because it has been judged relevant
by the user, deserves extra screen real estate in the form
of (a) its text and (b) the return set sorted by similar-
ity to the selected article. The term “logical zoom” is
used here because a “physical zoom” (that is, writing

the selected title in a larger font) is not at all desirable.

ooming in this context involves changing the form of
the information (from title to text) and not just its scale,
but it does provide similar functionality. At first glance,
the list of proximal documents is redundant since the
clustering tree also gives proximity information between
the selected document and the others in the return set.
However, the clustering tree is not a perfect model of the
similarity structure and instead represents a “best fit”
or compromise over the entire return set. As a result,
documents that are far apart in the tree might actu-
ally be quite similar and dissimilar documents might be
quite close in the tree. By listing the return documents
with respect to proximity to the selected document, the
distance information is depicted more accurately and in

a manner particularly relevant to the user.

2.4. Usage

Now that the fundamental structure of the interface has
been discussed, we can step through an example of how
it can be used to respond to queries. eturning to the
“scientific studies of air pressure” example, inspection of
Figure 1 shows that the articles were clustered into two
main groups: air force articles on the left and all others
on the right. A user could descend the more promising
right subtree by clicking on the right split button. Since
this pulls out a cluster of articles on meteorology, the
user might descend further down the right side of the
tree to see clusters on heat, fluid dynamics, and sound.
While articles on studies of air pressure are not con-
centrated in any one of the sub-clusters, they generally
appear near the top of the lists for the major clusters
and the clusters themselves give structure to the set of

relevant articles.

3. IMPLEMENTATION
3.1. Corpus and Preprocessing

A set of 25,629 articles (those of more than 5 words in
length) from the Academic American ncyclopedia [1]
was employed because it was the largest collection that
had been preprocessed using the latent semantic index-
ing tools. The documents were indexed by the 56,53

terms that occurred in more than two documents. The
encyclopedia articles included cross-reference “See Also”
links which were not used in the structuring procedure
partly because these are used inconsistently (e.g, many
asymmetrical links) and incompletely (e.g., many rea-
sonable links left out) but also because we hoped that

the interface described here would be applicable to cor-

pora that have no explicit cross-references.

LSI, a statistical technique that locates documents and
terms in a high-dimensional space, was used to analyze
the collection. This is done by generating a large, sparse,
term by document matrix where each cell of the matrix
contains the number of occurrences of the given term
in the given document. This matrix is then analyzed
using singular value decomposition (S D). This finds
a lower-dimensional vector representation for each term
and each document such that the dot product of the vec-
tors reapproximates the corresponding cell of the origi-
nal matrix. To compute the similarity between a query
and a document, we use the vector representations of the
terms in the query. The cosine (normalized dot product)
between the resulting vector and the vector representing
the document is the similarity score used in this inter-

face.

In the particular analysis performed here, the raw term
by document matrix was transformed using entropy term-
weighting with no normalization for the length of the
articles. S D generated a 322-dimensional vector for
each term and document. Although the present inter-
face uses an LSI retrieval engine, interactive clustering
should be useful for any retrieval algorithm that returns

an ordered list of documents.

3.2. Clustering

User-specified queries generate return sets consisting of
the top 1.6 of the articles (the top 4 out of 25, in
the case of the encyclopedia) and these are used to com-
pute a clustering tree. roximity in the resulting clus-
tering is not a simple function of document to document
similarity but is based on overall patterns of similarity
in the 4

complished using Ward’s algorithm [6] which we chose

returned documents. The clustering is ac-

after informally comparing several standard clustering
algorithms on the basis of interpretability of the derived

clusters.

Considerable computation is required to search the doc-
ument vectors and generate the clustering. Willet [1]
describes studies of parallel clustering algorithms how-
ever, he appears not to have reported parametric tests of
performance for hierarchical clustering. We compared a
hierarchical clustering algorithm implemented on a 16K
processor Mas ar parallel computer to performance on

a workstation (D C5). The results are summarized

of vectors | workstation | parallel
256 12 4

512 61 14

124 343 36

Table 1: Seconds of processing time for clustering.

in Table 1. For return sets of 256 LSI vectors (each con-
sisting of 322 real numbers), the parallel machine was 3
times faster than the workstation, while for sets of 1 24
vectors the parallel machine was about 1 times faster.
We estimate that an improved algorithm on a dedicated
parallel computer for search and clustering could com-
plete the entire operation in about 8 seconds per query

(over 4 times faster than the sequential machine).

Because the Mas ar computer was not consistently avail-
able, a version of the interface was developed in which
the computation was distributed across a network of

workstations.

Several methods, including global clustering and a mas-
sively parallel implementation, were tested to reduce
the time for calculation of the distances between the
query and the documents. The most practical method
involved dividing the database into equal parts and load-
ing these through the local network to 45 workstations.
The vector calculated from a user’s query was sent to
each of these workstations which then computed its top
matches and returned them for merging. Finally, the
vectors for the top 4 articles were clustered and the
interface updated, resulting in an overall response time

of approximately one minute.

3.3. Performance

In spite of our use of advanced interface concepts such
as giving windows interlocking functionality (that is, se-
lections in one window a ect the displays in other win-
dows in a task-relevant way), we do not view this is
not an interface for a casual user. Nonetheless, our ex-
perience suggests that about 2 minutes of training is
sufficient for technically-oriented users to become com-
fortable with the interface and capable of carrying out

simple navigation tasks.

In our informal experiments with the encyclopedia, queries
varied a great deal as to whether or not hierarchical

clustering simplified the retrieval process. Clustering
appears to be useful for retrieval when questions are
composed of several parts or include terms with multi-

ple meanings. This is because many spurious entries are

retrieved and the interface allows entire categories to be
quickly discarded. For example, the following queries

appeared to be facilitated by the interface:

future of electronic libraries
history of rock and roll

french explorers of north america
extinction of the dinosaurs.

However, there are many situations in which the clus-
tering did not seem to improve retrieval. One class of
failures was due to classical information retrieval not
being good enough to return the relevant articles for
clustering. Another class involved classical information
retrieval being too good, that is in which a single con-
ceptual category fills the top of the return list. Further-
more, the interface is of little benefit when no appropri-
ate answer is present in the database. However, there
are also cases in which the clustering does not match
the categories of interest to the user. Informally, how-
ever, it seemed that clustering was successful in most
cases when the returned documents fell naturally into

distinct categories.

3.4. Labeling of Cluster Nodes

A limitation of this approach is that collections with en-
tries that have no concise description or title are difficult
to search. The terse and informative titles in the ency-
clopedia are very helpful in guiding the user to fruitful
material. Taking this a step further, in the hierarchical
interface, there is much to be gained from somehow get-

ting concise descriptions or titles of higher-level clusters.

We considered several techniques (cf. [4]) to achieve
this, including presenting a small set of terms that are
closest to the query centroid. However, none seemed
more e ective than the chosen approach of simply pre-
senting the ranked document lists in similarity order.
This way, when the user focuses on a given subtree a
“description” of that subtree appears in the form of the
list of documents that comprise it. Of course, this solu-
tion does not work in the case of collections of untitled
documents but that must be considered as a separate

problem.

We found that clustering an output list may show the
scope of topics relevant to a particular query. For in-
stance, the response to the general query “Tell me about
telephones”, included clusters that could be character-
ized as “electronics”, “electrical devices”, “information

theory”, and “finance.” In this case, an encyclopedia

article on telephones was available (and was retrieved
first in response to the query) but the clustering gave a

useful overview of the topic.

An interesting observation is that often the strongest
clustering occurs when a query contains a polysemous
word. In these cases, the high level clusters correspond
to the individual word senses (e.g., “lung” as a Chinese
“lung” as a body part). The fact that the

clustering separated the senses cleanly lead us to con-

name vs.

sider applying this technique to automatically generate
senses for nouns (e.g., [7]) Investigation of this possi-
bility suggested, unsurprisingly, that the clustering was
only e ective at distinguishing senses which were well
represented in the corpus (the encyclopedia in this case
which was unfortunately fairly limited in its coverage of

some of the more interesting polysemous words).

4. DISCUSSION

An interface built around an interactive dendrogram has
been developed for allowing a user to rapidly explore the
structure of documents returned to an LSI query. Of
course, the utility of this technique depends on several
factors such as the needs and background of the user and
the nature of the corpus and queries. Therefore, it seems

clustering should not be the only technique available.

Clustering is likely to be most useful in large, rich cor-
pora. One barrier to scaling the technique up to larger
collections (apart from the computational costs) is that
as of yet, no systematic rule has been found for deter-
mining the optimal number of articles to cluster given
the corpus size. In particular, small sets of articles do
not provide enough structure for clustering to be e ec-
tive while large sets are costly and tend to blur impor-
tant local structure. This issue would need to be ad-

dressed in later empirical studies.

ACKNOWLEDGMENTS

We thank Sue Dumais for assistance with the corpus

and scaling. ascal Obry is an employee of lectricite
De France (DF) who participated in this project as
a visitor at Bellcore. Michael Littman is now at the

Department of Computer Science, Brown University.

REFERENCES

1. Academic American rinceton:
Arete

obtained from

ncyclopedia.
ublishing Company, 1981. lectronic copy

rolier, Inc.

11.

12.

Using hypertext in select-
ing reusable software components. In Proceedings

ACM yperte t (Dec. 1991), pp. 25 38.

The use of cluster hier-
archies in hypertext information retrieval. In Pro
ceedings ACM yperte © (Nov. 1989), pp. 225 237.

Describ-
ing categories of objects for menu retrieval systems.
ehavior esearch Methods

Computers (1984), 242 248.

nstrumentation and

Using latent semantic anal-
ysis to improve access to textual information. In
Proceedings ACM S C uman actors in Com
puting Systems (May 1988), pp. 281 285.

Cluster Analysis. London: Heine-

mann ducational Books, 1977.

Lexical am-
bigity in information retrieval. ACM ransactions

(1992), 115 141.

on nformation Systems

A self-organizing semantic map
for information visualization. In Proceedings of the

ACM S Conference (uly 1991), pp. 262 269.

An information retrieval
approach for automatically constructing software
libraries.

ransactions on Software ngineer

ing S (1991),8 813.

Automatic classifica-
tion of chemical structure databases using a highly
parallel array processor. ournal of Computational

Chemistry (1988), 378 386.

isualization of quantita-
tive data. Tech. rep., Department of Statistics, U.
of Washington, Seattle and Bellcore, 199 . A 27

min video tape.

nformation etrieval

London: Butterworths, 1979.

