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We describe the Latent Semantic Indexing Subspace Signature Model (LSISSM) for semantic content 
representation of unstructured text. Grounded on Singular Value Decomposition (SVD), the model 
represents terms and documents by the distribution signatures of their statistical contribution across the top-
ranking latent concept dimensions. LSISSM matches term signatures with document signatures according to 
their mapping coherence between LSI term subspace and LSI document subspace.  LSISSM does feature 
reduction and finds a low-rank approximation of scalable and sparse term-document matrices. Experiments 
demonstrate that this approach significantly improves the performance of major clustering algorithms such 
as standard K-means and Self-Organizing Maps compared to Vector Space Model (VSM) and the traditional 
LSI model. The unique contribution ranking mechanism in LSISSM also improves the initialization of 
standard K-means compared to random seeding procedure which sometimes causes low efficiency and 
effectiveness of clustering. A two-stage initialization strategy based on LSISSM significantly reduces the 
running time of standard K-means procedures. 

1. Introduction  

Document clustering faces several challenges such as feature selection, feature and document representation, 
determining the optimal number of the clusters, clustering accuracy and efficiency, labeling of clusters, scalability, and 
cluster similarity/distance. Targeting these issues, we propose a semantic representation model motivated by the LSI 
Probabilistic Model (Ding, 2005) along with the visual patterns of the concept mapping and the distribution of term 
contribution and document contribution on the latent concept dimensions explored by the Storylines interface (Zhu & 
Chen, 2007). The model is divided into three components: LSI subspace signature content representation, signature 
ranking for dimension reduction and novel signature similarity measures. Each term and each document is defined by 
an LSI subspace signature which represents the distribution of its local statistical contribution on the top-ranking LSI 
latent concept dimensions. Then, novel similarity measures bridge the term signatures and the document signatures. 
Finally, the initial term-document matrix is transformed into a low-rank approximation using the latent concept 
dimensions as intermediate layers and bootstrapping of term rankings to control information loss. 

We evaluate the effectiveness and efficiency of the model for document clustering. Specifically, this paper examines 
how LSISSM may improve the performance of   major clustering algorithms, such as standard K-means and Self-
Organizing Maps (SOM) and how LSISSM solves the initialization problem of standard K-means (Dubes & Jain, 
1988). 

The remainder of this paper is organized as follows: Section 2 reviews various data models for semantic content 
representation and document clustering. Section 3 describes the three components of LSISSM. Section 4 presents the 
methodology of the LSISSM-based clustering applications and evaluation methods. Section 5 lists the data sets, 
procedures of text pre-processing and the experiment results. Finally, Section 6 discusses of the results and summarizes 
the work. 

2. Literature Review 

Here, we review previous approaches to semantic content representation and the application of semantic representation 
to document clustering.  

2.1 Data Models for Semantic Content Representation 

The Vector Space Model (VSM, Salton et al., 1975) often uses term frequency or tf*idf scores (TFIDF) to weigh the 
associations between terms and documents. It does not capture the semantic relationships of concepts effectively and 
does not reduce dimensionality systematically. Richer representations can overcome some of the drawbacks of VSM. 
These semantic data models represent each topic as a unified signature which is a weighted vector. These signatures 
show how terms and documents are related and can be used to disambiguate those terms and documents. Similar 
signatures generally reflect the semantic relationships. There are three major types of statistical semantic content 
representation: LSI, probabilistic topic models and connectionist models. 
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2.1.1. Latent Semantic Indexing and Related Models 

Traditional LSI (Deerwester et al., 1990; Koll, 1979) is the truncated Singular-Value Decomposition (SVD) which 
decomposes the term-document matrix A into a term-concept matrix U, a diagonal singular value matrix C and 
document-concept matrix V: 

TUCVA          (1) 

The entry values in matrix A are term frequencies or TFIDF scores. The top K dimensions of A and V are selected as the 
best proximity of the original matrixes. Each term or each document is represented by a vector which lists its least 
square distances to the top K dimensions. 

Traditional LSI has problems related to information loss, noise reduction and the interpretation of the latent concept 
dimensions. Information loss occurs when the number of the LSI latent concept dimensions selected for the low-rank 
approximate of the LSI subspaces, the K values, is small. Empirically, the number of the latent concept dimensions is 
usually less than 400 even when the corpus contains thousands of documents. The values of SVD represent many of 
noisy and unimportant term relationships. Kontostathis et al. (2005) demonstrate that removing 70% of the SVD entries 
does not affect information retrieval performance. These values have a strong correlation with term second-order co-
occurrence (Kontostathis & Pottenger, 2006) which can be either semantic relations or noise. In addition, the partial 
SVD processes such as “folding in” are sources of information loss. The “folding up” approaches (Mason & Spiteri, 
2008; Tougas & Spiteri, 2006, 2007) adaptively combine matrix updating with folding in and use an error measure to 
control the accuracy loss of partial SVD. Another consideration is that the traditional LSI latent concept dimensions 
often do not correlate to topics. Because the projection scores in the LSI subspaces can be either positive or negative, 
they do not have direct statistical meanings. A group of terms that has higher projection scores in the same dimensions 
with the same sign might be associated with one topic and its context. But, two different topics often map to the same 
latent concept dimension with different signs and each latent concept dimension can be a mixture of topics.  

Non-negative Matrix Factorization (Xu et al., 2003; Xu et al., 2004) captures the topics with the positive projection on 
the latent concept dimensions and linearly combines these topics to represent the documents. Cai et al. (2005) propose 
an unsupervised linear discriminant analysis method, so called Local Preserving Indexing (LPI). This model projects 
the documents to a lower dimension space and captures both geometric and discriminating structures. However, it still 
has to determine how many dimensions to use in the subspace. 

Ding (2005) developed a probabilistic model which provides insight for LSI representations based on the dual 
relationship between words and documents. The model has established the contribution of dimensions to the latent 
semantic space. Specifically, the singular value squared is the contribution of the corresponding dimension. This 
quadratic dependence means that traditional LSI dimensions with small singular values are overrepresented by the 
linear relationship. Furthermore, Ding demonstrated that the importance of LSI dimensions follows the Zipf 
distribution, which explains why a small number of the most important dimensions can adequately approximate the 
overall semantic space. Based on the conclusion that the singular value squared is proportional to the statistical 
contribution of the latent concept dimensions, the normalized contribution of the approximated subspace is the ratio 
from the sum of the singular value squared of the selected subspace to the sum of the singular value squared of the 
overall subspace. 

2.1.2. Probabilistic Topic Models 

Hoffman (1999) proposed a probabilistic topic model in his Probabilistic Latent Semantic Indexing (PLSI) which is 
based on the idea that a latent topic can be represented as a distribution over terms and a document is a mixture of the 
latent topics. The model specifies the probabilistic relationships between a term t and the latent topic set Z with T topics 
for a document: 
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However, PLSI itself is not generative which makes it difficult to predict a new document. Blei et al. (2003) extended 
the model and smoothed the topic distribution by placing a Dirichlet prior to it, the so called Latent Dirichlet Allocation 
(LDA) which is a generative model. The probability density of a T dimensional Dirichlet distribution over a 
multinomial distribution P= (p1,…., pT) is defined by: 
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In Eq. 2, jis the prior observation count that topic j is sampled in a document before observing any term from the 
document. Using Expectation-Maximization (EM) or Gibbs Sampling, the probabilistic topic models directly extract 
those topics which are represented by the most associated terms (Griffiths et al., 2007). Using matrix factorization, 
PLSI and LDA split the term-document matrix into two matrixes, a term-topic matrix and a document-topic matrix. 
The feature values in PLSI and LDA are non-negative and sum to 1. The effectiveness of probabilistic topic models 
relies on two factors, the estimate of the term distribution – how many topics in the corpus and the smoothing which 
depends on the quality of the training sets. 

2.1.3. Connectionist Models 

A third numerical approach to semantic content representation is based on connectionist models (e.g., Rosenblatt, 1958; 
Rumelhart, 1990; Rumelhart et al., 1986). These models represent their attributes using multiple-layer architectures. In 
Rumelhart’s feed-forward network model a hidden layer between the input layer and the output layer is composed of 
the neurons which adapt the Back-Propagation supervised learning algorithm (Werbos, 1994) and learn the patterns of 
the semantic associations of concepts and attributes within a series of contexts using non-linear sigmoid activation 
functions to estimate the weights of the inputs and presents the outputs as the weighted-sum of the inputs with a 
minimized error. In a sense, the hidden layer is similar to the LSI latent concept dimensions. For unsupervised learning, 
Self-Organizing Maps (SOM, Kohonen, 1990) does not include the hidden layer and adjusts the weights of the inputs 
so that the similar inputs produce similar outputs. 

2.2 Document Clustering 

Clustering algorithms fall into two main categories, hierarchical and non-hierarchical.  Non-hierarchical clustering 
generally partitions a set of objects into non-overlapping groups so as to maximize the within-cluster inter-object 
similarities and minimized the between-cluster similarities due to some heuristic criterion of ‘goodness of clustering’.  
Currently, the best K-means partition algorithm is bisecting-K-means. It divides the corpus into two clusters with K-
means first. Then, it iteratively partitions the currently largest cluster into two clusters, again using K-means, until K 
clusters have been identified (Steinbach et al. 2000).  However, these K-means document clustering algorithms need a 
predefined number of the clusters. 

The number of the document clusters in a text corpus is difficult to predict. SOM (Kohonen, 1990) automatically 
decides the number of the regions or the clusters. Willett (1990) introduced hierarchical agglomerative clustering, as 
mentioned above, which emphasizes the discovery of the boundaries of the clusters but does not interpret them. Wang 
et al. (1999) describes an association-rule based non-hierarchical clustering algorithm, which compares the similarity 
among the frequent feature sets occur in the documents instead of the pair-wise similarity between documents. Beil et 
al. (2002) extend the idea to create a hierarchical clustering method called HFTC (Hierarchal Frequent Term-based 
Clustering) which greedily picks frequent feature sets to minimize the overlap among the documents. Fung et al. (2003) 
propose the Frequent Itemset-based Hierarchical Clustering (FIHC) algorithm that applies terms in the global frequent 
feature sets to reduce dimensionality and significantly improve the clustering accuracy.  These methods help 
interpretation to the document clusters with frequently used terms but have weakness in explaining the relationships 
between concepts and documents. Schütze and Silverstein (1997) used the LSI projections to the LSI document space 
to improve the efficiency of the document clustering. Each document is represented as a vector of the least-square 
distances from the latent concept dimensions to the original documents with a fixed number of the top-ranking 
dimensions.  Ampazis and Perantonis (2004) introduce LSISOM which applies the LSI term subspace to improve SOM 
document clustering. 

3. LSI Subspace Signature Model 

We propose the LSI Subspace Signature Model (LSISSM) for semantic content representation. Figure 1 shows the key 
components of LSISSM: signature representation, term/document ranking and similarity between signatures. 

“Insert Fig #1 here ( assist_fig1.tif )” 
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Figure 1: Overview of the LSI Subspace Signature Model. 

The model derives a spectral signature representation for terms and documents, ranks them according to their 
contribution and determines relatedness between the signatures by their matching patterns on the identical LSI latent 
concept dimensions. 

LSISSM has several advantages compared to traditional LSI: The top-ranking dimensions are picked based on their 
global statistical contribution to the LSI subspaces instead of a predefined fixed number; we use an optimized feature 
set to present the documents instead of a number of the LSI latent concept dimensions because the meaning of the 
latent concept dimensions is implicit; the similarity schemas depend on the association between term signatures and 
document signatures and reduce the noise in the associations by bridging and matching the LSI term subspace and the 
LSI document subspace. The output of the model is a low-dimension term-document matrix weighted by the signature 
similarity measures. 

3.1 LSI Subspace Term Signatures and Document Signatures 

Ding’s (2005) model shows that the singular value squared is proportional to the statistical contribution of the 
corresponding latent dimensions. Based on this result, we built feature and document representations according to their 
local statistical contribution to the latent concept dimensions. The contribution is calculated by the squared product of 
the singular value of the latent concept dimension and the project score to the dimension. The values of the signatures 
are non-negative and have an explicit statistical meaning -- the contribution to the latent concept dimensions. The terms 
and documents are represented separately by the contributions to the top K dimensions in the identical LSI latent 
concept dimensions. 

The signatures are generated as follows: 

Step 1: Use SVD to decompose the term-by-document matrix A into a term-concept matrix U, a diagonal matrix C and 
a document-concept matrix V. 

Step 2: For the U or V matrices, the top K dimensions selected as the proximity of the overall subspace is determined 
by the ratio Td: 
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In Eq. 4, D is the square of the singular value S and M is the number of the latent concept dimensions with a non-zero 
contribution. Td defines the contribution portion of the top K dimensions that contribute to the overall latent subspaces. 
Users can set it according to their statistical confidence interval on errors. For example, setting Td at 0.95 the top K 
dimensions that contribute 95% are used and the remainder is ignored. The experiments show that if selecting a 
subspace which makes a high percent contribution, the number of the latent dimensions is large. For instance, we test 
the corpus with 2527 Reuters news articles described in Section 5 and find that 917 top latent concept dimensions make 
about 80 percent global contribution (Td=0.8). This indicates that LSISSM uses more latent dimensions than that are 
typically used in traditional LSI. 

Step 3: win is the local contribution of a term/document Xi to a dimension n formulated by Eq. 5, where Xin is the nth 
dimension projection score of Xi. 

2
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The global contribution of a term or document to the selected LSI subspaces, Gin, is: 
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In Eq. 6, K is determined by Td. Normalized by the contribution of all the terms or documents, Gin is converted to NGi: 
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In Eq. 7, P is the number of the terms or the documents in the corpus. The global contribution of any subset of the 
corpus, Tg,, is: 
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Where S is the number of the terms or documents in the subset. 

Step 4: Xi is represented by a vector of win as a signature, where n belongs to {1,.., K}.  

An example of term and document signatures is shown in Fig. 2. This was taken from our earlier analysis of a 
collection of 948 news articles extracted from a terrorism news collection. In each of the three panels, the X axes 
indicate the LSI latent concept dimensions and the coordinates in Y axes are weighted by win.  The positions and height 
of the peaks in the document signature suggests that the term signatures capture the main themes of the news article. 
This motivates us to create a similarity metric which links the term signatures and the document signatures through the 
projections to the same LSI latent concept dimensions across the latent term and document subspaces. 
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Figure 2: Note the similarity between the term signatures for “taliban” and “Ladin” (upper two panels) and the 
document signature for a news article with a title “The US Imposes Sanctions on Taliban over bin Ladin” (lower panel) 
generated from Storylines (Zhu and Chen, 2007).  

3.2 LSI Subspace Signature Ranking 

The signature ranking algorithm, Global and the Local Contribution Ranking (GLCR), iteratively picks terms or 
documents based on their contribution rankings until these terms and documents collectively reach a predefined 
threshold, the ratio Tg as calculated by Eq. 8. The term frequency distribution in a corpus follows Zipf’s Law (Gelbukh 
& Sidorov, 2001) because a small number of terms make the major statistical contribution. Accordingly, when using 
GLCR to select terms, the value of Tg is set high enough to ensure the term subset makes a major contribution to the 
overall semantic subspace. 

GLCR has two steps. The global contribution of one term or one document is calculated by Eq. 6 or 7 and the local 
contribution of one term or one document is estimated by the absolute value of its projection score to one latent concept 
dimension. GLCR first selects a threshold Tl for the local contribution win. Tl is derived empirically and is initialized by 
a ratio to the mean of the absolute values of all the projection scores across the top K dimensions. Some terms have 
higher scores for the global contribution but the projection value for each of the top K dimensions is lower than Tl. 
Such terms lack discriminating power and are ignored.  GLCR scans the signature of each term or document. The 
selection starts from the dimension with the highest singular value and follows step-wise. This strategy means that 
although a term or document has high projection scores in many dimensions, while in a given dimension the absolute 
value of its projection score is larger than Tl, it will be selected and the searching process goes to another candidate. 
Then, each term or each document in the subset is ranked according to Eq. 6 or 7. 

3.3 Measuring the Similarity of the Term and Document Signatures 

We build novel similarity measures to correlate term signatures and document signatures. The Concept and Document 
Signature Similarity (CDSS) between a term signature ra and a document signature ru is calculated by Eq. 9: 
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K is determined by Td. αa,u is the significance weight which is determined by the number of co-projected latent concept 
dimensions of the two signatures with a range from 0.0 to 1.0 and β is a pruning parameter which determines how 
many of the top K latent concept dimensions are included in the similarity score.  If β equals 0.0, all the top K 

dimensions are used in the similarity measure. If β equals 1.0, only the dimensions with values above r  are used. The 

value of β can be larger than 1.0. r is the average score of the signature across the top K dimensions. davg in αa,u is the 
average number of the co-projected dimensions shared by each pair of the signatures. The sign of projection scores 
affect the matching of the term and document signatures. For instance, by observation of the matrix U and V, if the 
projection score of a term is negative in one dimension, the most related documents might have negative projection 
scores in the same dimension. The association is counted only when the two signatures have projection scores with the 
same sign on a given dimension. 

CDSS calculates the normalized association between a term and a document by reducing noise. In addition, we propose 
a variation of the CDSS measure.  Specifically, Global Contribution enhanced CDSS (GCDSS) (Eq. 10) multiples the 
CDSS similarity score with the global contribution score of each term signature: 
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GCDSS is used only between term and document signatures. And, CDSS can be applied to measure the relationships of 
term-term, document-document or term-document. 

After the three steps of LSISSM, a sparse TFIDF document-term matrix is re-constructed and the association between a 
term and a document is weighted by CDSS or GCDSS. In this stage, the similarity measures only count the 
relationships between the terms and the documents where the terms appear. Using GCDSS the top-ranking terms have 
higher scores compared to those generated by CDSS, which suggests the representatives for the documents. By 
observation, topical terms (i.e., those relevant to the class labels of the documents) are often ranked highest within the 
documents (see the results in Section 5.1.3). 

4. Text Clustering Using LSISSM 

LSISSM has controls on the level of the dimension reduction. The term-signature ranking narrows the scope of the 
features to a limited number of conceptual terms and the parameters of the model ensure the term subset make the main 
global contribution to the LSI term subspace. This mechanism is determined by the characteristics of the term 
distribution for a text corpus, Zipf’s distribution. Using the term subset to present the overall semantic space, a highly 
scalable term-document matrix is transformed into a low-dimension term-document matrix weighted by CDSS or 
GCDSS. These similarity schemas match any conceptual term signature with any document signature and prune the 
association between the signatures.  So, the model reduces noise with parameters. 

4.2.  Applying LSISSM to Basic K-means and SOM 

There are two ways to apply LSISSM to standard K-means and SOM (see Figure 3). One way is to use the output of 
LSISSM directly, the low-dimension term-document matrix, as input for the two algorithms. Another way is to group 
top-ranked conceptual terms first by the clustering algorithms and then rank term clusters according to the sum-up 
global contribution of the terms in them. The term clustering algorithm applied here is SOM (Kohonen, 1990; Lin et 
al., 1991) because the number of term clusters cannot be pre-defined.  The term-term similarity matrix is constructed by 
CDSS. The value of β is set from 1.0 to 1.5 in the experiments. After term clustering, each term cluster is ranked by the 
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accumulated value of the global statistical contribution of all the terms in the cluster. Only those terms which appear in 
the top-ranking term clusters are included in the input matrix. 

4.3. Applying LSISSM-based Two-stage K-means 

Standard K-means minimizes the sum of the squared distances between each point in the dataset and the closest center. 
The K centers start with randomization seeding. The random initialization procedure dramatically affects the 
performance of the K-means algorithm and sometimes causes very poor performance. We propose a two-stage 
initialization procedure based on LSISSM. In the first stage, standard K-means is run with a fixed number of the 
clusters and a small feature subset which only includes the top-ranking terms generated by LSISSM. In the second 
stage, the centroids of the K clusters produced by the first step are used as the initial centroids of the second stage using 
an expanded feature subset. Then, the standard K-means algorithm is run again. The results in section 5.2 show that this 
strategy improves both the efficiency and accuracy of standard K-means. 

K-means++ (Arthur & Vassilvitskii, 2007) mathematically shows that the initial clusters positioned in the dense data 
regions which make the major statistical contributions improve both the efficiently and effectively of standard K-
means. And, that method is applied to non-textual data with low dimensionality. Silic et al. (2008) used the seeding 
method, K-means++, but did not report the effect. The performance of K-means++ is affected by the dimensions used 
for each data point, while our model targets both the selection of data points and dimension reduction. 

Our two-stage K-means approach tries to find and use the key conceptual term subsets to represent the dense regions of 
the document clusters. Our assumption is that the key term subset (i.e., the one which makes the main contribution to 
the semantic concept space) is most likely associated with the dense regions of document clusters. The stochastic 
processing of the standard K-means converges very fast if the key-term subset is very small and the resulting centroids 
are likely to be better positions than those generated randomly. The conceptual feature subset is selected by GLCR.  
The procedures for the two-stage K-means are as follows: 

Step 1: Arbitrarily choose k initial centers C = {c1,…, ck}. 

Step 2: For each document χi, set the cluster Ci to be the set of documents in χ that are closer to ci than any other 
centers. 

Step 3: For each document χi, set ci to be the center of mass of all points in Ci: 





ii Cx

ii xCc /1
      

(11) 

Step 4: Repeat Steps 2 and 3 until C no longer changes. 

In the first stage, k initial centers are generated randomly and each document is represented by a small feature subset of 
the top-ranking terms. After the algorithm converges, the centers of the clusters produced by the first stage are 
calculated using Eq. 11. Then, these centers are used as the seeds for the second stage to repeat Steps 2 to 4. In the 
second stage, the corpus is represented by a much larger feature subset with additional top terms. We explore two 
strategies to implement the second stage of the two-stage K-means algorithm. One strategy uses the feature subset 
directly. The second strategy uses the term clusters. The feature subset is clustered by SOM and then the term clusters 
are ranked by the accumulated statistical contribution of the terms inside the clusters.  The terms in the top-ranking 
clusters are then used in the second stage. 

5. Experiments 

The experiments evaluate how LSISSM affects the performance of the major clustering algorithms because the major 
challenges for text clustering are selecting the discriminated terms and reducing the noise from the relationships 
between term and documents. Two clustering algorithms are tested: standard K-means (Dubes & Jain, 1988) and SOM 
(Kohonen, 1990; Lin et al., 1991). Moreover, to solve the initialization problem of standard K-means, we propose a 
novel K-means algorithm, two-stage K-means. 
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5.1. Research Strategy and Considerations 

5.1.1. Data Sets, Text Pre-Processing and Document Clustering Evaluation Methods 

Three standard news corpora, Reuters 215871, TDT1 and TDT22, are used. From the Reuters21578–Apte-90Cat corpus, 
2527 training news articles were selected. These belong to 10 categories, acq, coffee, interest, iron-steel, oat, 
palmkernel, sugar, sun-meal, veg-oil and wheat. The sample size for each category varied from 1 to 1646. For TDT1, 
we generate a subset which consists of all the 25 categories and contains 1131 documents that are evaluated as “YES” 
rather than “BRIEF” in the evaluation sheet of TDT1. The sample size for each category varied from 2 to 273. The full 
TDT2 corpus has 100 categories (news story topics). We randomly selected a subset consisting of 30 categories (topics) 
containing 3349 documents which are evaluated as “YES” rather than “BRIEF” in the evaluation sheet of TDT2. The 
sample size for the categories varied from 1 to 1132. The three datasets used as the training sets for text clustering. 

Pre-processing directly influences the quality of the clustering. First, Stanford part-of-speech (POS) tagging 
(Toutanova & Manning, 2000; Toutanova et al., 2003) is applied to the corpus. Then, stop-word filtering using the 
Google stop word list and Porter stemming are applied. Each article for a given category has to include at least one 
noun as identified by the POS tagging. All the nouns are included in the analysis because this approach emphasizes the 
concept representations of the documents. The association between a noun term and a document in the initial term-
document matrix is weighted by traditional TFIDF. Each column of the matrix is then normalized to 1.0. The VSM 
baselines of the clustering algorithms are generated with the full-feature sets and their term-document matrix weighted 
by TFIDF. 

For non-hierarchical clustering, the pureness of the clusters is evaluated using Purity (Manning et al., 2008) and 
Entropy (Beil et al., 2002). Xu et al. (2003) and Cai (2005) use Normalized Mutual Information (NMI) which can be 
applied to all clustering methods. The advantage of NMI is that its value is not affected by the number of the clusters. 
For Purity and NMI, higher values show better performance, while lower entropy values indicate better performance. In 
our experiments the entropy value is normalized by the size of the categories to ensure that it has a range between 0.0 
and 1.0, and so it is called relative entropy. 

 5.1.2. VSM as the Baseline Model of the Clustering Technique 

Using Purity, Entropy and NMI, we see that traditional LSI improved the efficiency of document clustering (Schütze & 
Silverstein, 1997) but it does not improve its effectiveness: in Tables 1 and 2 in which no consistent pattern is found. 
The results indicate that VSM is not worse than traditional LSI in the two of the three corpora. With the increase of the 
category size from the Reuters corpus to TDT2, traditional LSI becomes less effective. Thus, we picked VSM as the 
baseline for the following studies and compared the results of LSISSM in section 5.3.1. 

 

Corpus Category Size Similarity Top K Purity Entropy NMI 

Reuters 10 TFIDF ------ 0.795 0.250 0.389 

Reuters 10 LSI 10 0.888 0.223 0.492 

TDT1 25 TFIDF ------ 0.815 0.133 0.789 

TDT1 25 LSI 10 0.828 0.170 0.745 

TDT2 30 TFIDF ------- 0.913 0.072 0.765 

TDT2 30 LSI 10 0.905 0.091 0.719 

 

                                                                 
1
http://www.daviddlewis.com/resources/testcollections/reuters21578/ 

2 http://www.ldc.upenn.edu/ 
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Table 1: Comparison of the clustering performance between VSM and traditional LSI using the standard K-means for 
Reuters, TDT1 and TDT2. 

Corpus Category Size Similarity Top K NMI 

Reuters 10 TFIDF ------ 0.257 

Reuters 10 LSI 20 0.315 

TDT1 25 TFIDF ------ 0.690 

TDT1 25 LSI 30 0.631 

TDT2 30 TFIDF ------- 0.517 

TDT2 30 LSI 30 0.475 

 

Table 2: Comparison of the clustering performance between VSM and traditional LSI using SOM with Reuters, TDT1 
and TDT2. Note: In these tables, Top K denotes the top K latent concept dimensions which represent the selected LSI 
document subspace. These K values are the dimension numbers which achieve the best scores of Purity, Entropy and 
NMI for each data set. The bold values indicate the better performance if compared VSM with traditional LSI. 

5.1.3. Determining Top Ranked Terms 

We use the top-rank terms to seed the clustering tests described in the Section 5.2.  GLCR selects the terms which 
make the major contribution to the corpus and reflect the most popular topics in the corpus. For instance, the top 20 
terms listed in Table 3 ranked by GLCR and extracted from the subset of the Reuters 21578 corpus cover most topics 
related to the ten class labels,  “acq, coffee, interest, iron-steel, sugar, wheat, palmkernel, oat, sun-meal, and veg-oil”. 

 

Rank Term  Rank Term 

1 stg 11 reserve 

2 tonn 12 taft 

3 rate 13 oil 

4 bank 14 bill 

5 sugar 15 twa 

6 wheat  16 federal 

7 coffee  17 export 

8 gencor  18 purol 

9 cyclop  19 chemla

10 usair  20 money 

Table 3: Top 20 terms which make the highest contribution to the LSI term subspace for the Reuters corpus ranked by 
GLCR. 

The size of the term subsets is determined by the parameters, Tg, Tl and Td, which are between 0.0 and 1.0. Td 
determines how many top dimensions are selected. Limiting the number of dimensions reduces noise. In general a 
larger Tl value means less noise. Tg determines the upper boundary of the overall contribution of the term subset if Tl 
and Td are predefined. We varied Td, Tl and Tg to maximize the contribution included while minimizing the noise. For 
example, from the Reuters dataset, if Td is set to 0.95 and Tl is set to 0.5, GLCR selects a subset of 2673 conceptual 
terms out of the whole set (9070 terms). This set makes an 83.3% (maximum value of Tg) statistical contribution to the 
selected LSI term subspace. From TDT1, GLCR selects a subset of 1614 terms out of the whole set (8338 terms), 
which makes an 82.30% (maximum value of Tg) statistical contribution to the overall term subspace. From the TDT2, 
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GLCR selects a subset of 3007 concept terms out of the whole set (17083 terms), which makes an 85.14% (maximum 
value of Tg) statistical contribution to the overall LSI term subspace. 

5.2. Results 

We report a number of tests of clustering using LSISSM.  The formal comparison to the VSM Baseline is described in 
Section 5.3.1.  The standard K-means algorithm uses the same parameters across the three datasets. The predefined 
number of clusters for the K-means is 10, 25 and 30 respectively for the three data sets with 10 iterations. SOM uses 
the same parameters across the three datasets. Epsilon is 0.25, and each run has 2500 iterations with 12 nearest 
neighbors. 

5.2.1. K-means Using Top-Ranking Terms 

By focusing on just the top terms as obtained by LSISSM, the overall clustering performance is improved. As shown in 
Figure 3, the standard K-means reaches the best points with the top 2600 terms on both Purity and Entropy measures, 
and receive the maximum value of NMI with a feature subset consisting of the top 600 terms. The numbers of the top-
ranking conceptual terms included in the feature subset are also listed in the figure. For example, in Figure 3 the top 
100 terms contribute 19.1% (Tg) to the LSI term subspace. 

Figure 3: Evaluation of the standard K-means with Tg using Reuters and CDSS. Note that lower entropy scores 
indicate better performance. 

 

Figure 4: Evaluation of standard K-means with Tg using TDT1 and CDSS. 
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Figure 5: Evaluation of standard K-means with Tg using TDT2 and CDSS. 

In Figure 4, standard K-means reaches the best scores with the top 1500 terms evaluated by the three evaluation 
methods. In Figure 5, standard K-means reaches the best scores with the top 2400 terms for Purity and Entropy.  For 
the NMI measure, standard K-means reaches the maximum score with the subset that includes the top 2000 terms.  

5.2.2. K-means Using Top-ranking Term Clusters 

In this section, the value of β is set to 1.0 in CDSS to produce term-term similarity matrix for term clustering with 
SOM. SOM generates 317, 227 and 348 term clusters for the Reuters, TDT1 and TDT2 respectively. 

As shown in Figure 6, using the Reuters collection standard K-means reaches the best points with the top 200 term 
clusters for both Purity and Entropy measures, and it receives the maximum value of NMI with the top 175 term 
clusters. 

Figure 6: Evaluation of standard K-means with Tg using the Reuters, CDSS and term clusters. 

 

Figure 7: Evaluation of standard K-means with Tg using TDT1, CDSS and term clusters. 
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Figure 8: Evaluation of standard K-means with Tg using TDT2, CDSS, and term clusters. 

In Figure 7, standard K-means reaches the best scores with the feature subset including the top 100 
term clusters evaluated by any of the three evaluation methods. In Figure 8, standard K-means has 
the maximum scores of the three among methods with the top 50 term clusters.  

5.2.3. Two-stage K-means 

We pause in the comparison of the clustering algorithms to consider an extension of K-Means 
using LSISSM, so called two-stage K-means. Two-stage K-means picks a term subset of no more 
than 100 in the first stage so that the document clustering algorithm can converge quickly. 

 

Corpus Dataset Running 
Time: 

1st stage 

Running 
Time: 

2nd stage 

Overall 
Running 

Time 
Reuters 2600 ------ ------ 9368.8 
Reuters 20+2600 43.2 2842.5 2885.7 
Reuters C200 ------ ------ 6991.8 
Reuters 20+C200 42.6 2437.7 2480.3 
TDT1 1500 ------ ------ 1360.4 
TDT1 100+1500 114.7 111.6 226.3 
TDT1 C100 ------ ------ 1124.4 
TDT1 100+C100 114.7 75.5 190.2 
TDT2 2400 ------ ------ 15804.6 
TDT2 40+2400 497.3 3998.5 4495.8 
TDT2 C200 ------ ------ 13298.9 
TDT2 40+C200 492.0 2766.8 3258.9 

Table 4: Comparison of the running time (seconds) between standard K-means and Two–stage K-
means using the top-ranking terms and the top-ranking term clusters for Reuters, TDT1 and TDT2. 

For instance, in Table 4, 20+2600 indicates that in the first stage a feature subset with the top 20 
terms is used and in the second stage the feature subset is expanded to 2600 features. 20+C200 
denotes that the first stage is the same as the previous example and in the second stage 200 term 
clusters are used. The term clusters applied in this section are the same as ones in Section 5.2.2.  
Table 7 reports the running time for both stages. Compared to standard K-means, two-stage K-
means is consistently faster. For instance, compared to Reuters (C200) and TDT1 (1500), the runs 
of the two-stage K-means Reuters (20+C200) and TDT1 (20+1500) are much faster.  TDT1 
(20+1500) saves 83% of the time compared to TDT1 (1500). 
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As shown in Tables 5 and 6, two-stage K-means not only saves time but also improves the 
clustering accuracy. For instance, in Table 5, compared to TDT1 (1500) and TDT2 (2400), TDT1 
(100+1500) and TDT2 (40+2400) are top ranked for each of the three evaluation measures. And, 
Reuters 20+2600 has a better score than Reuters 2600 only for NMI. And as shown in Table 6, 
compared to TDT1 (C100) and TDT2 (C200), TDT1 (100+C100) and TDT2 (40+C200) have 
better scores with each of the three evaluation measures. For Reuters, with the top 200 term clusters 
the two-stage K-means has better scores for Purity and Entropy. 

 

Corpus Dataset Purity Entropy NMI 

Reuters 2600 0.853 0.200 0.462 

Reuters 20+2600 0.845 0.211 0.470 

TDT1 1500 0.884 0.097 0.849 

TDT1 100+1500 0.913 0.090 0.864 

TDT2 2400 0.943 0.063 0.823 

TDT2 40+2400 0.947 0.059 0.827 

Table 5: Comparison of the clustering performance between standard K-means and two–stage K-
means using CDSS and the top-ranking terms for Reuters, TDT1 and TDT2. 

 

Corpus Dataset Purity Entropy NMI 

Reuters C200 0.833 0.224 0.471 

Reuters 20+C200 0.841 0.218 0.455 

TDT1 C100 0.882 0.098 0.850 

TDT1 100+C100 0.906 0.095 0.861 

TDT2 C200 0.936 0.069 0.811 

TDT2 40+C200 0.947 0.060 0.836 

Table 6:  Comparison of the clustering performance between standard K-means and two–stage K-
means using CDSS and the top-ranking term clusters for Reuters, TDT1 and TDT2. 

5.2.4. SOM Using Top-Ranking Terms 

The input matrix for SOM is weighted by GCDSS. In Figure 9, SOM finds the turning point which 
has the maximum score from the feature subset with the top 2600 terms if evaluated by Entropy. 
The best score for Purity is received by the subset with the top 30 terms and the best score for NMI 
is generated by the subset with only 10 top terms. 
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Figure 9: Evaluation of SOM with Tg using Reuters and GCDSS. 

Figure 10: Evaluation of SOM with Tg using TDT1 and GCDSS. 

 

Figure 11: Evaluation of SOM with Tg using TDT2 and GCDSS. 

In Figure 10, SOM gets the maximum scores for the NMI and Entropy measures with the top 1000 
terms respectively and reaches the peak score of Purity with the top 1600 terms. In Figure 11, SOM 
achieves the maximum scores of the three evaluation methods with the top 3000 terms.  

5.3. Summary of Results 

5.3.1.  Comparison to VSM 

In Tables 7, 8, and 9, the best points selected from Figure 3 to 11 are compared with the VSM 
baselines. Generally these points have at least two best evaluation scores generated by two different 
evaluation measures. Compared to VSM, when using the top-ranking terms, the Purity test to 
LSISSM showed in Table 7 is significantly better across the three corpora (t(2)=4.51, p<0.05) and 
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NMI is also statistically significant (t(2)=13.54, p<0.05). When using top-ranking term clusters, the 
NMI t-test to LSISSM showed in Table 8 is statistically significant across the three corpora 
(t(2)=9.43, p<0.05) if β is set at 1.0 in CDSS for SOM term clustering. If β is set as 1.5 in CDSS for 
SOM term clustering, t(2) value will increase to 43.6 (p < 0.001). In Table 9, NMI t-test is 
statistically significant (t(2)=8.61, p<0.05) across the three corpora. Because SOM produces 
different numbers of the clusters for the same corpus with the different feature subsets, only NMI is 
suitable to be used to compare the performance. 

 

Corpus Similarity Top Terms Purity Entropy NMI 

Reuters TFIDF ALL 0.795 0.250 0.389 

Reuters CDSS 2600 0.853 0.200 0.462 

TDT1 TFIDF ALL 0.815 0.133 0.789 

TDT1 CDSS 1500 0.884 0.097 0.849 

TDT2 TFIDF ALL 0.913 0.072 0.765 

TDT2 CDSS 2400 0.943 0.063 0.823 

Table 7: Comparison of the clustering performance between the VSM baseline and LSISSM using 
standard K-means, CDSS and the top-ranking terms for Reuters, TDT1 and TDT2. 

 

Corpus Similarity Top Term Clusters Purity Entropy NMI 

Reuters TFIDF ALL 0.795 0.250 0.389 

Reuters CDSS C200 (β=1.0) 0.833 0.224 0.471 

Reuters CDSS C200(β=1.5) 0.846 0.210 0.460 

TDT1 TFIDF ALL 0.815 0.133 0.789 

TDT1 CDSS C100(β=1.0) 0.882 0.098 0.85 

TDT1 CDSS C100(β=1.5) 0.923 0.069 0.865 

TDT2 TFIDF ALL 0.913 0.072 0.765 

TDT2 CDSS C50(β=1.0) 0.936 0.068 0.825 

TDT2 CDSS C200(β=1.5) 0.938 0.064 0.836 

Table 8: Comparison of the clustering performance between the VSM baseline and LSISSM using 
standard K-means, CDSS and the top-ranking term clusters for Reuters, TDT1 and TDT2. 

 

Corpus Similarity Top Terms NMI 

Reuters TFIDF ALL 0.257 

Reuters GCDSS 2600 0.355 

TDT1 TFIDF ALL 0.690 

TDT1 GCDSS 1000 0.755 
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TDT2 TFIDF ALL 0.517 

TDT2 GCDSS 3000 0.602 

Table 9: Comparison of the clustering performance between the VSM baseline and LSISSM using 
the SOM, GCDSS and the top-ranking terms for Reuters, TDT1 and TDT2. 

Thus, the GCDSS measure significantly improves the performance of SOM compared to the VSM 
baseline with the top ranking terms. And, the CDSS measure significantly enhances the 
performance of standard K-means compared to the VSM baseline using either top-ranking terms or 
top-ranking term clusters. There is no obvious difference between the VSM baseline and GCDSS 
measure for standard K-means algorithm, and there is no obvious difference between the VSM 
baseline and CDSS measure for the SOM algorithm. That might be due to the different mechanisms 
of K-means and SOM. GCDSS measure highlights the key terms and it is helpful for SOM to pick 
the documents as the winning nodes through competitive learning if the documents have stronger 
relationships with these key terms. The K-means averages the contributions of these key terms on 
the centroid while GCDSS does not. 

LSISSM decreases the number of the required features at least 71.3% (2600 out of 9070). The 
running time of the algorithms drops from overnight to just a few hours. The two-stage K-means 
improves the efficiency compared to the model-based standard K-means and speeds the clustering 
up to five times without losing clustering accuracy. Two-stage K-means reduces the initialization 
problem of standard K-means. Compared to the VSM baseline, the two-stage K-means algorithm 
runs faster by one or two orders of magnitude. 

5.3.2.  Model Parameters 

Overall, LSISSM does not require strict parameter tuning and allows each parameter a large range 
of values which ensure the significance of the clustering results.  

Besides, the parameters of the clustering algorithms themselves, the CDSS and GCDSS parameters 
Tg, Tl, Td and β change the performance substantially. The range of Td in these experiments varies 
from 0.50 to 0.99. Td is often set as 0.95, which means the top K latent concept dimensions selected 
make 95% contribution to the LSI subspaces. Tl ranges from 0.3 to 1.0. The initial value of Tl is 
often set as 0.5. The value of Tg represents the accumulated statistical global contribution of the 
feature subsets to the LSI term subspace calculated by GLCR. If Tl and Td are predefined, the upper 
boundary of Tg determines how many terms are included in the feature subset. The results shown in 
Figures 3 to 11 demonstrate the range of Tg in which the clustering performance of the standard K-
means and SOM are augmented is very large. The graphs in Figure 3 show that if Tg is larger than 
0.5, the performance of the standard K-means is consistently higher than the VSM baseline. The 
plateau in Figure 4 indicates that if Tg is larger than 0.50 and less than 0.82, the performance of 
standard K-means is consistently higher than the VSM baseline. The plateau in Figure 5 indicates 
that if Tg is larger than 0.55 and less than 0.85, the performance of standard K-means is consistently 
higher than the VSM baseline. The curves in Figure 6, 7 and 8 show that if Tg is larger than 0.6, 0.5 
and 0.58, the performance of standard K-means is consistently higher than the VSM baseline 
respectively. The trends in Figure 9, 10 and 11 show that if Tg is larger than 0.05, 0.2 and 0.15, the 
performance of SOM is consistently higher than the VSM baseline respectively.  

The pruning parameter β in CDSS or GCDSS affects the clustering performance by determining 
how many latent concept dimensions are used in the comparison of the two signatures.  For 
instance, changing the value of β from 0.0 to 0.5 and then to 1.0, the NMI scores for the standard 
K-means decreases from 0.407 to 0.389 and then increase to 0.455 with a feature subset of 1800 
top-ranking terms for the Reuters corpus. Empirically, the value of β is set to 0.0 comparing a term 
signature and a document signature. If matching two term signatures, the scope of β is 1.0 to 1.5. 
The effect of the term clusters on the performance of the standard K-means varies with the value of 
β while CDSS is used to calculate the similarity between the term signatures. For instance, if the 
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value of β is changed from 1.0 to 1.5, for TDT1 with the top 100 term clusters, the Purity increases 
from 0.882 to 0.923, see Table 8. 

6. Conclusion 

We designed and developed a novel model, LSISSM, for semantic content analysis of unstructured 
text. The central components of the model follow the Zipf’s Law -- the term frequency distribution 
rule in the documents. The model gives unified and comparable spectral signature representations 
for terms and documents in an unsupervised manner. A unique ranking mechanism for signatures 
sorts the terms and documents and controls information loss during dimension reduction. The 
similarity measures between the signatures reflect the coherence of term maps and document 
clusters on the LSI latent concept dimensions. The value of our model is demonstrated across the 
document clustering applications systematically controlled by a large range of model parameters.  

The model should be able to automatically identify the topic labels for the document clusters.  The 
feature ranking algorithm can also be applied to document ranking to select small representative 
sample subsets for active learning (Zhu, 2009; Zhu & Allen, in preparation). The LSISSM 
document signature ranking algorithm (GLCR) picks good training samples and maintaining the 
sampling distribution of the full set of text categories, even outlier categories.  This method does 
not need to be given the labels of the categories. That is because the ranking algorithm selects the 
samples following the order of their importance concern both the global and local statistical 
contribution of the samples to the LSI document subspace. The samples with the highest statistical 
contribution to the corpus will be included in the subset first. Each sample picked is a good 
statistical representative of the corpus. So, the average contribution for each sample in the subset 
generated by our approach is higher than the average. Even compared to the independent tests on 
the full training set, our method does not decrease the performance and exceeds it in some cases. In 
addition, the results from these studies indicate that the sample subsets represented by a small 
feature subset improve and stabilize the effectiveness and efficiency of the classifiers without 
affecting the sample distribution of the text categories. The effects of the LSI subspace signature 
ranking on the unsupervised classification and supervised classification are consistent and identical.  
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