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[57] ABSTRACT

A neuron network which achieves learning by means of
a modified Boltzmann algorithm. The network may
comprise interconnected input, hidden and output lay-
ers of neurons, the neurons being “on-off”’ or threshold
electronic devices which are symmetrically connected
by means of adjustable-weight synapse pairs. The syn-
apses comprise the source-drain circuits of a plurality of
paralleled FETs which differ in resistance or conduc-
tance in a binary sequence. The synapses are controlled
by the output of an Up-Down counter, the reading of
which is controlled by the results of a correlation of the
states of the two neurons connected by the synapse
pairs following the application of a set of plus and minus
training signals to selected neurons of said network. A
noise generator comprising a thermal noise source is
provided for each neuron for the purpose of simulated
annealing of the network.

12 Claims, 5 Drawing Sheets
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1
NEUROMORPHIC LEARNING NETWORKS

FIELD OF THE INVENTION

The invention relates to neuron networks. These
networks are circuits which function and are capable of
learning in ways thought to resemble the functioning
and learning mode of the human brain.

BACKGROUND OF THE INVENTION

The roots of the current work on neural networks (or
models) can be found in a 1943 paper by McCulloch and
Pitts, W. S. McCulloch and W. H. Pitts, “A logical
calculus of ideas immanent in nervous activity”, Bulle-
tin of Mathematical Biophysics, 5, 115 (1943). There the
brain is modeled as a collection of neurons with one of
two states, s;=0 (not firing) or s;=1 (firing at maximum
rate). If there is a connection from neuron i to neuron j,
the strength or weight of this connection is defined as
wj. Each neuron adjusts its state asynchronously ac-
cording to the threshold rule:

s = [(1’ ]if? wissj [z ]0,‘

where 6;is the threshold for neuron i to fire.

A model of this sort formed the basis for the percep-
tion built by Rosenblatt in the early 1960s, F. Rosen-
blatt, “Principals of Neurodynamics: Perceptrons and
the theory of brain mechanisms”, Spartan Books, Wash-
ington, D.C. (1961). This perceptron consisted of an
input array hard-wired to a set of feature detectors
whose output can be an arbitrary function of the inputs.
These outputs were connected through a layer of modi-
fiable connection strength elements (adjustable resis-
tors) to threshold logic ‘units, each of which decides
whether a particular input pattern is present or absent.
The threshold logic units of this machine can be imple-
mented in hardware by using a bistable device such as a
Schmitt trigger, or a high-gain operational amplifier.
There exists an algorithm, the perceptron convergence
procedure, which adjusts the adaptive weights between
the feature detectors and the decision units (or thresh-
old logic units). This procedure is guaranteed to find a
solution to a pattern classification problem, if one exists,
using only the single set of modifiable weights. Unfortu-
nately, there is a large class of problems which percep-
trons cannot solve, namely those which have an order
of predicate greater than 1. The Boolean operation of
exclusive-or has order 2, for example. Also the percep-
tron convergence procedure does not apply to net-
works in which there is more than one-layer of modifi-
able weights between inputs and outputs, because there
is no way to decide which weights to change when an
error is made. This is the so-called “credit assignment”
problem and was a major stumbling block until recent
progress in learning algorithms for multi-level ma-
chines.

Rosenblatt’s perceptron consisted of a bank of 400
photocells each of which looked at a different portion
of whatever pattern was presented to it. The photocells
were connected to a bank of 512 neuron-like association
units which combined signals from several photocells
and in turn relayed signals to a bank of threshold logic
units. The threshold logic units correlated all of the
signals and made an educated guess at what pattern or
letter was present. When the machine guessed right, the
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human operator left it alone, but when it guessed wrong
the operator re-adjusted the circuits electrical connec-
tions. The effect of repeated readjustments was that the
machine eventually learned which features character-
ized each letter or pattern. That machine thus was man-
ually adaptive and not self-adaptive.

Another seminal idea in neural or brain models also
published in the 1940s was Hebb’s proposal for neural
learning, D. O. Hebb, “The Organization of Behavior”,
Wiley, N.Y. (1949). This states that if one neuron re-
peatedly fires another, some change takes place in the
connecting synapse to increase the efficiency of such
firing, that is, the synaptic strength or weight is in-
creased. This correlational synapse postulate has in
various forms become the basis for neural models of
distributed associative memory found in the works of
Anderson, J. A. Anderson, J. W. Silverstein, S. A. Ritz,
and R. S. Jones, “Distinctive features, categorical per-

"ception, and probability learning: Some applications of -

a neural model”, Psych. Rev. 84, 413-451 (1977); and
Kohonen, T. Kohonen, “Associative memory—A sys-
tem-theoretic approach”, Springer-Verlag, Berlin
1977).

Various neural transfer functions have been used in
neural models. The all-or-none McCulloch-Pitts neuron
is represented by a step at the threshold and can be
implemented by any one of several bistable (or binary)
electronic circuits. A real (or biological) neuron exhib-
its a transfer function comprising two horizontal lines
representing zero and maximum output, connected by a
linear sloping region. This characteristic is often repre-
sented by a sigmoid function shown for example in S.
Grossberg, “Contour enhancement, short term mem-
ory, and constancies in reverberating neural networks,
in Studies in Applied Mathematics, LII, 213, MIT
Press, (1973); and T. J. Sejnowski, “Skeleton Filters in
the brain”, in “Parallel Models of Associative Mem-
ory”, G. Hinton and J. A. Anderson (eds.), Erlbaum,
Hilisdale, N.J., 189-212 (1981). An operational ampli-
fier can be designed to have a transfer function close to
the sigmoid.

Recent activity in neural network models was stimu-
lated in large part by a non-linear model of associative
memory due to Hopfield, J. J. Hopfield, “Neural net-
works and physical systems with emergent collective
computational abilities”, Proc. Natl. Acad. Sci. USA,
79, 25542558 (1982). These neurons are an all-or-none,
i.e. bistable or two-state type with a threshold assumed
to be zero. Memories, labeled k, are stored in the outer
product sum over states:

wij = %(2&" - sk -1 @
where the (2s— 1) terms have the effect of transforming
the (0,1) neural states to (—1,1) states. It is apparent that
for a particular memory, s,
3)

E.W,"l
; i

jiil:(b:‘ - negt - Dyt + 21 @sk — sk - l)s_,'l]

The first summation term has mean value (N—1)/2 for
the j terms summed over N neurons while the last term

/in brackets has a mean value of zero for random (and
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therefore pseudoorthogonal) memories when the sum
over M memories (label k) is taken. Thus:

_ 1 @

N
?w,;,sjlz 3

st -1

Since this is positive (>0;=0) if s;!=1 and negative if
s;1=0, the state does not change under the threshold
rule and is stable except for the statistical noise coming
from states k=41, which has a variance of

[(M—DN=-1)/2}4.

Hopfield’s proposed neural network is fully con-
nected and symmetric. This means that every neuron is
connected to every other neuron by means of direct and
reciprocal synapses of equal strengths or weights. Thus
for every pair of neurons, i and j, wj=wj;, but w;=0.
Using an analogy from physics, namely the Ising model
of a spin-glass, S. Kirkpatrick and D. Sherrington, “Infi-
nite-ranged models of spin-glasses”, Phys. Rev. 17,
4384-4403 (1978), we can define an “energy” or “cost”,
E; as

S
E=-—%-% Wij Si Sj ®

Z
JFEi
If one neuron, sk, changes state, the energy change is;

AEy = —A:kj 3 WS ©

i~k
" By the threshold rule, this change could only have
occurred if the sign of the summation term were the
same as the sign of Asg. Therefore, all allowed changes
decrease E and gradient descent is automatic until a
local minimum is reached. This energy measure is an
example of a class of systems with global Liapunov
functions which exhibit stability under certain condi-
tions, M. A. Cohen and S. Grossberg, “Absolute stabil-
ity of global pattern formation and parallel memory
storage by competitive neural networks”, Trans. IEEE
SMC-13, 815, (1983). The neural states at these minima
represent the memories of the system. This is a dynami-
cal system which in the process of relaxation, performs
a collective computation.

Integrated circuits implementing this type of associa-
tive memory have been made by groups at the Califor-
nia Institute of Technology, M. Silviotti, M. Emerling,
and C. Mead, “A Novel Associative Memory Imple-
mented Using Collective Computation”, Proceedings of
the 1985 Chapel Hill Conference on Very Large Scale
Integration, p. 329; and at AT&T Bell Laboratories, H.
P. Graf et al., “VLSI Implementation of a Neural Net-
work Memory with Several Hundreds of Neurons”,
Proceedings of the Conference on Neural Networks for
Computing, p. 182, Amer. Inst. of Phys., 1986. A system
of N neurons has 0(N/logN) stable states and can store
about 0.15N memories (N=100) before noise terms
make it forget and make errors. Furthermore, as the
system nears capacity, many spurious stable states also
creep into the system, representing fraudulent memo-
ries. The search for local minima demands that the
memories be uncorrelated, but correlations and general-
izations therefrom are the essence of learning. A true
learning machine, which is the goal of this invention,
must establish these correlations by creating “internal
representations’” and searching for global (i.e. network-
wide) minima, thereby solving a constraint satisfaction
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problem where the weights are constraints and the
neural units represent features.

Perceptrons were limited in capability because they
could only solve problems that were first order in their
feature analyzers. If however extra (hidden) layers of
neurons are introduced between the input and output
layers, higher order problems such as the Exclusive-Or
Boolean function can be solved by having the hidden
units construct or “learn” internal representations ap-
propriate for solving the problem. The Boltzmann ma-
chine has this general architecture, D. H. Ackley, G. E.
Hinton, and T. J. Sejnowski, “A learning algorithm for
Boltzmann machines”, Cognitive Science 9, 147-169
(1985). A Boltzmann machine is a neural network (or
simulation thereof) which uses the Boltzmann algo-
rithm to achieve learning. In the Boltzmann machine,
unlike the strictly feed forward nature of the percep-
tron, connection between neurons runs both ways and
with equal connection strengths, i.e. the connections are
symmetric, as in the Hopfield model. This assures that
the network can settle by gradient descent in the energy
measure.

- _L ™M
E=—53 3 wysisj+ 3 0;s;
2 Gy T

where 0; are the neuron thresholds. These threshold
terms can be eliminated by assuming that each neuron is
connected to a permanently ‘“on” true unit by means of
a connection of strength w; ;rye= —6; to neuron i. Thus
the energy may be restated as;

E = _l'ii 2 wij 5i §f )
while the energy gap or difference between a state with
neuron k “off” and with the same neuron “on” is

AE, = % Wi Si ®
Instead of a deterministic threshold, neurons in the

Boltzmann machine have a probabilistic rule such that
neuron k has state sg—1 with probability;

1 (10)
1 + e—AEW/T

Py

where T is a parameter which acts like temperature in a
physical system. The output of the neuron is always
either O or 1, but its probability distribution is sigmoid,
so, on the average its output looks like the sigmoid.
Note that as T approaches 0, this distribution reduces to
a step (on-off) function. This rule allows the system to
jump occasionally to a higher energy configuration and
thus to escape from local minima. This machine gets its
name from the mathematical properties of thermody-
namics set forth by Boltzmann.

While the Hopfield model uses local minima as the
memories of the system, the Boltzmann machine uses
simulated annealing to reach a global, network-wide

. energy minimum since the relative probability of two

global states A and B follows the Boltzmann distribu-
tion; .

La e—(EA—EB/T an

Pp
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and thus the lowest energy state is most probable at any
temperature. Since, at low temperatures, the time to
thermal equilibrium is long, it is advisable to anneal by
starting at high temperature and gradually reduce it.
This is completely analogous to the physical process of
annealing damage to a crystal where a high temperature
causes dislocated atoms to jump around to find their
lowest energy state within the crystal lattice. As the
temperature is reduced the atoms lock into their proper
places within the lattice. The computation of such an-
nealing is complex and time-consuming for two reasons.
First, the calculation involves imposing probability
distributions and physical laws in the motions of parti-
cles. Second, the computations are serial. A physical
crystal’s atoms naturally obey physical laws without
calculation and they obey these laws in parallel. For the
same reasons the Boltzmann machine simulations on
computers are also complex and time-consuming, since
they involve the use of Eq. (10) to calculate the “on”
probability of neurons. The present invention utilizes
physical noise mechanisms to jitter or perturb the “on”
probability of the electronic neurons.

The “credit assignment” problem that blocked
progress in multi-layer perceptrons can be solved in the
Boltzmann machine framework by changing weights in
such a way that only local information is used. The
conventional Boltzmann learning algorithm works in
two phases. In phase “plus” the input and output units
are clamped to a particular pattern that is desired to be
learned while the network relaxes to a state of low
energy aided by an appropriately chosen annealing
schedule. In phase “minus”, the output units are un-
clamped and the system also relaxes to a low energy
state while keeping the inputs clamped. The goal of the
learning algorithm is to find a set of synaptic weights
such that the “learned” outputs in the minus phase
match the desired outputs in the plus phase as nearly as
possible. The probability that two neurons i and j are
both “on” in the plus phase, P;i+, can be determined by
counting the number of times they are both activated
averaged across some or all patterns (input-output map-
pings) in the training set. For each mapping, co-occur-
rence statistics are also collected for the minus phase to
determine P;—. Both sets of statistics are collected at
thermal equilibrium, that is, after annealing. After suffi-
cient statistics are collected, the weights are then up-
dated according to the relation; :

Awjj=n(Pyt —P;~) (12)
where n scales the size of each weight change.

It can be shown that this algorithm minimizes an
information theoretic measure of the discrepancy be-
tween the probabilities in the plus and minus states. It
thus teaches the system to give the desired outputs. An
important point about this procedure is that it uses only
locally available information, the states of two con-
nected neurons, to decide how to update the weight of
the synapse connecting them. This makes possible a
(VLSI) very large scale integrated circuit implementa-
tion where weights can be updated in parallel without
any global information and yet optimize a global mea-
sure of learning.

Recently a promising deterministic algorithm for
feedforward neuron networks has been found which
takes less compute time for solving certain problems, D.
E. Rumelhart, G. E. Hinton and R. J. Williams, “Learn-
ing internal representations by error propagation”, in
Parallel Distributed Processing: Explorations in the
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Microstructure of Cognition, Vol. 1: Foundations, D.
E. Rumelhart and J. L. McClelland (eds.), MIT Press,
Cambridge, MA (1986), p. 318. This algorithm also uses
a generalization of the perceptron convergence proce-
dure in a variation due to Widrow and Hoff called the
delta rule, G. Widrow and M. E. Hoff, “Adaptive
switching circuits”, Inst. of Radio Engineers, Western
Electric Show and Convention, Convention Record,
Part 4, 96-104 (1960). This rule is applied to layered
feedforward networks in which only one way or for-
ward synapses connect adjacent layers of the network.
The neurons have a graded semi-linear transfer function
similar to a sigmoid wherein the output, o, is a differen-
tiable function of the total input to the neuron. This
algorithm involves first propagating the input training
pattern forward to compute the values of o—. The
output is then compared to the target outputs o+ to
yield an error signal, o, for each output unit. The error
signals are then recursively propagated backward, with
the synaptic weights changed accordingly. This back-
ward error propagation will result in learning.

Both the Boltzmann and the back-propagation proce-
dures learn. They both create the internal representa-
tions required to solve a problem by establishing hidden
units as features and connections strengths as contraints.
Then, by doing a global search of a large solution space,
they solve the problem. While a back-propagation pro-
cedure is computationally more efficient than the Bolt-
zmann algorithm, it is not as suitable for VLSI imple-
mentation. Firstly, in the back-propagation procedure,
except for the weights feeding the final output layer of
neurons, adjusting of weights requires non-local infor-
mation that must be propagated down from higher lay-
ers. This necessitates synchrony and global control and
would mean that weight processing could not be a par-
allel operation. Secondly, the network must be specified
in advance as to which units are input, hidden, and
output because there would have to be special proce-
dures, controls, and connections for each layer as well
as different error formulae to calculate. Thirdly, the
deterministic algorithm has some unaesthetic qualities.
The weights could not start at zero or the hidden units
will be identical error signals from the outputs so that
the weights cannot grow unequal. This means that the
system must first be seeded with small random weights.
This also means that if no error is made, no learning
takes place. Additionally, a deterministic algorithm may
be more likely to get stuck in local minima. Finally,
there is no clear way to specify at what activation level
a neuron is “on”, or what should be the output target
value without a real threshold step for the output. A
real-valued floating point comparison and its backward
propagation is quite difficult to implement in a parallel
VLSI system although it could be accomplished by
having separate specialized units for that task.

In contrast, the Boltzmann algorithm uses purely
local information for adjusting weights and is suitable
for parallel asynchronous operation. The network looks
the same everywhere and need not be specified in ad-
vance. The neurons have two stable states, ideal for
implementation in digital circuitry. The stochastic na-
ture of the computation allows learning to take place
even when no error is made and avoids getting stuck in
local minima. Finally, the processes in the algorithm
which take so much time on a conventional digital,
serial computer are annealing and settling to equilib-
rium, both of which can be implemented efficiently and



4,874,963

7

naturally on a chip using the physical properties of
analog voltages rather than digital computation.

Prior art patents in this field include the Hiltz U.S.
Pat. No. 3,218,475, issued on Nov. 16, 1965. This patent
discloses an on-off type of artificial neuron comprising
an operational amplifier with feedback. The Jakowatz
U.S. Pat. No. 3,273,125, issued on Sept. 13, 1966 dis-
closes a self-adapting and self-organizing learning neu-
ron network. This network is adaptive in that it can
learn to produce an output related to the consistency or
similarity of the inputs applied thereto. The Martin U.S.
Pat. No. 3,394,351, issued on July 23, 1968 discloses
neuron circuits with sigmoid transfer characteristics
which circuits can be interconnected to perform various
digital logic functions as well as analog functions.

The Rosenblatt U.S. Pat. No. 3,287,649, issued Nov.
22, 1966 shows a perceptron circuit which is capable of
speech pattern recognition. The Winnik et al. U.S. Pat.
No. 3,476,954, issued on Nov. 4, 1969 discloses a neuron
circuit including a differential amplifier, 68, in FIG. 2.
The Cooper et al. U.S. Pat. No. 3,950,733, issued on
Apr. 13, 1976 discloses an adaptive information process-
ing system including neuron-like circuits called mne-
monders which couple various ones (or a multiplicity)
of the input terminals with various ones (or a multiplic-
ity) of the output terminals. Means are provided for
modifying the transfer function of these mnemonders in
dependence on the product of at least one of the input
signals and one of the output responses of what they call
a Nestor circuit.

None of these patents utilize the Boltzmann algo-
rithm or any variation thereof as part of the learning
process, none utilizes simulated annealing, and none of
these circuits is particularly suitable for VLSI imple-
mentation.

SUMMARY OF THE INVENTION

The invention comprises a neural network compris-
ing circuitry which is adapted to utilize a modified and
simplified version of the Boltzmann learning aigorithm.
The circuit design and the algorithm both facilitate very
large integration (VLSI) implementation thereof. The
learning algorithm involves simulated annealing
whereby the network asynchronously relaxes to a state
of minimum energy. The analog neurons may comprise
differential amplifiers which have two stable stages,
“on” or “off”’. Each neuron has two or more synapses
connected to its inputs as well as a threshold signal. The
synapses comprise variable resistors which may com-
prise transistors and the resistors values determine the
weight or strength of the synaptic connection. The
transistors comprising the synaptic weights can be
switched in and out of the synaptic circuit by means of
a digital control circuit.

Each neuron input thus has a voltage applied thereto
which is proportional to the aigebraic sum of the cur-
rents flowing through each of its weighted input synap-
ses. If this algebraic sum is less than the threshold voit-
age, the neuron will remain in the “off” state, if the
threshold is exceeded, it will be switched “on”. The
network is symmetric, which means that connected
neurons are all reciprocally connected. Thus, each neu-
ron which has an input from another neuron, has its
output connected to the other neuron with an equal
synaptic weight.

The simulated annealing involves perturbing the
threshold signals of all neurons in a random fashion
while learning or teaching signals are applied to all the
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neurons in one or both of the input and output layers of
the network. In accordance with one feature of the
invention, the perturbing random signal may be ob-
tained from an electrical noise generator which may be
easily implemented on-chip.

The network comprises, for each pair of connected
neurons, a digital control circuit for measuring the cor-
relation of each pair of connected neurons following
each application of the pair of training signals of the
plus and minus phases, as explained above. A positive
correlation results if both neurons are in the same state
and a negative correlation results if they are in different
states. If both the correlations of the plus and minus
phases are the same, the synaptic weight is left un-
changed but if they are different the weights are either
increased or decreased, depending on the relative val-
ues of the plus and minus phase correlations.

Any one of the unused neurons may function as a
threshold source. This so-called “true’”” neuron is perma-
nently “on” and is connected to the input of each active
neuron through an adjustable resistor which applies a
voltage (or current) to each neuron input equal to the
desired threshold, but of the opposite polarity. The
neurons are then biased to fire or change from “off” to
“on” when the sum of its inputs reaches zero.

A chip implementing this invention may comprise N
neurons and N(N-1)/2 pairs of synapses, with a separate
logic and control circuit for each synaptic pair. Each
neuron also has a noise source connected thereto. This
circuitry permits a fully connected network, which
means that each neuron can be connected to every
other neuron. Fully connected networks are rarely
needed. Most networks comprise input, hidden and
output layers of neurons wherein the neurons of alil
layers are connected only to the neurons of the adjacent
layer. Thus in using the potentially fuily connectable
network of the present invention, the desired network
configuration is determined and then the undesired
synaptic connections are deleted simply by setting their
weights to zero, i.e. by opening the synaptic circuit.

Alternatively, a circuit may be designed for less than
full connectivity and the synapse pairs connected to the
neurons by means of switches to set up any desired
network. These switches can be on-chip electronic
switches actuated by external control signals.

It is thus an object of the invention to provide an
electronic neuron network suitable for VLSI implemen-
tation, comprising a plurality, N, of bistable (on-off)
neurons, N(N — 1)/2 pairs of adjustable strength synap-
ses each comprising a variable resistor, each pair of
synapses having a digital control circuit associated
therewith, said control circuits comprising logic means
to measure and record the correlation of each pair of
connected neurons after the application of plus and
minus phase training signals to said network and after
the simulated annealing of said network during the
application of said training signals by means of a vari-
able amplitude electronic noise signal, and means to
adjust the synaptic weights of each connected pair of
neurons in accordance with the resuits of said correla-
tion.

Another object of the invention is to provide a neu-
ron network of the type which is capable of learning by
means of a novel Boltzmann algorithm in which the
network relaxes by means of simulated annealing during
the application of training signals thereto, said network
comprising means to achieve said simulated annealing
by perturbing the threshold voltages of each of said
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neurons with a separate electronic noise signal which
varies from a high amplitude to a low amplitude during
each annealing cycle.

Another object of the invention is to provide a novel
learning method for a neuron network which network
utilizes simulated annealing to relax to a low energy
state, said method comprising the steps of, correlating
the states of each pair of connected neurons following
each cycle of simulated annealing, then adjusting the
synaptic weights of each of said pairs of neurons using
only the correlation data obtained from said connected
pairs of-neurons.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1is a diagram of a simple neural network.

FIG. 2 is a connectivity diagram of the neural net-
work of the present invention.

FIG. 3 is a transfer characteristic of an “on-off”” neu-
ron.

FIG. 4 is a block diagram of one type of neuron
which may be utilized in the present invention.

FIG. 5 shows a pair of adjustable synapses and the
circuitry for the adjustment thereof.

FIG. 6 is a block diagram showing a pair of symmet-
rically connected neurons and the auxiliary circuitry
thereof.

DETAILED DESCRIPTION

Neural network architectures are seen by their pro-
ponents as a way out of the limitations evidenced by
current mainstream artificial intelligence research based
on conventional serial digital computers. The expected
hope is that these neural network architectures will lead
to the kind of intelligence lacking in machines but
which humans are known to be good at, such as pattern
recognition, associative recall, fault tolerance, adapta-
tion, and general purpose learning. As an example, we
find it easy to recognize another human face, can associ-
ate with that face a name, address, taste in clothes, fa-
vorite foods and a whole host of other attributes within
a split second of seeing that face. This would be true
even if we hadn’t seen that person in a long time or if
some of our neurons had been damaged as a result of
excessive drinking. It would still be true if that person
had aged or otherwise changed his appearance some-
what. This same pattern recognition machine is capable
of learning many other tasks from weeding gardens to
playing tennis to medical diagnosis to mathematical
theorem proving. We would not expect a database sys-
tem to correctly or instantly recall faces especially if
they change. Nor could a medical diagnosis expert sys-
tem learn other tasks especially if some of its transistors
are malfunctioning. Current artificial intelligence ma-
chines, techniques and programs are very domain spe-
cific and inflexible, requiring careful programming.

In contrast, neural networks require no program-
ming, only training and “experience”. Their knowledge
is not localized in specific memory locations but is dis-
tributed throughout the network so that if part of the
network is damaged, it may still function nearly as well
as before. Associative recall is quick in the networks
described due to the collective nature of the computa-
tion and will work even in the presence of somewhat
incorrect or partial information. The networks are not
domain specific but could be trained on any input-out-
put pattern. As conditions change, these networks adapt
as a result of further “experience”. Research in neural
network applications is currently limited by the practi-
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cal complexity of the network since the simulations on
digital serial computers are very slow. By realizing
these networks in hardware, and using physical and
parallel processes to speed up the computation, which is
the aim of this invention, further research in neural net
algorithms and architectures will be expedited. -

One possible application is a system that reads written
words. Perhaps the most impressive application of neu-
ral architectures to date is the example of NET talk, T.
J. Sejnowski and C. R. Rosenberg, “NETalk: a parallel
network that learns to read aloud”, John Hopkins tech-
nical report JHU/EECS-86/01. Here, a network of
about 300 neurons learned to associate strings of En-
glish characters with the sounds they made after being
trained on a 20,000 work vocabulary. One could easily
imagine adding another step in the training so that vari-
ous fonts could be recognized by an optical reader as
the characters. It may be possible to include handwrit-
ten characters eventually. It is easy to imagine training
for different languages and dialects. The result would
be a system which could read written documents and
convert them to voice for transmission over phone
lines, for blind people, or for “listening” to memos
while driving your car.

A general class of problems well suited for neural
architecture solutions is the class of optimization prob-
lems of high complexity such as the traveling salesman
problem. The problem of routing telephone calls
through a multiplicity of trunks or scheduling packets in
data communications are special cases of such a class of
problems. A neural chip can be programmed or can
learn to make such complex decisions quickly.

Neural architectures are also suited to many problems
in traditional artificial intelligence application areas.
These include natural language understanding, pattern
recognition, and robotics. Unlike LISP programs, how-
ever, the learning that neuromorphic systems are capa-
ble of is not domain specific but rather general purpose.
The differences are mainly in the input-output systems.

In designing the present electronic neural network,
the physical behavior of the electronics has been used to °
advantage together with the maximum use of parallel-
ism. The sigmoidal probability distribution has a close
electronic analogy in a noisy voltage step. The probabil-
ity for a neuron to be “on” using the sigmoid distribu-
tion is the same within a few percent as the probability
for a deterministic “step” neuron to be “on” when its
threshold is smeared by Gaussian noise. So another way
of looking at annealing is to start with a noisy threshold
and gradually reduce the noise. The present invention
utilizes the thermal noise inherent in electronic circuits
to implement the noisy threshold required for anneal-
ing. The thermal noise follows the Gaussian distribu-
tion. Prior art computer simulations of the Boltzmann
machine have simulated noisy thresholds by generating
a different sequence of random numbers for each neu-
ron. This was time-consuming in that a single digital
computer had to perform this random number genera-
tion in sequence for each neuron to be annealed. The
present invention provides a separate and therefore
uncorrelated noise source for each neuron in the net-
work, and the annealing of all neurons takes place si-
multaneously.

FIG. 1 shows a simple neural network comprising
input, hidden and output layers of neurons, labeled N.
The input layer comprises two neurons, the hidden
layer, four; and the output layer a single neuron. The
lines with the double-headed arrows indicate symmetri-
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cal synaptic connections between the neurons. Such a
network comprises a simple Boltzmann machine which
can be taught to solve the Exclusive-Or function or
problem. At the conclusion of the learning process, the
output neuron will be firing, or “on” whenever the two
input neurons are in different states; and not firing if the
two input layer states are the same. The training pat-
terns applied during the learning process would be
based on the Exclusive-Or truth table which is to be
learned by the network. Thus during the plus phase of
the training procedure, both the input and output layer
neurons are clamped in the desired states in accordance
with the truth table, the annealing is then accomplished
by means of noise signals which start at a high ampli-
tude and are gradually reduced to zero amplitude; the
correlations of the connected neurons are then mea-
sured and temporarily stored. In the minus phase this
process is repeated with only the input neurons
clamped. The plus and minus correlations are then com-
pared and the synaptic connections updated in accor-
dance with the results of this comparison.

FIG. 2 illustrates the connectivity but not necessarily
the layout of a VLSI chip which is designed for full
connectivity, as defined above. Three neurons, labeled
1, i and j are shown, together with six pairs of synaptic
weights, wy; Wy, etc. Each neuron is a differential am-
plifier with complementary outputs s and s. The s out-
put may for example be +5 volts when the neuron is
firing and zero volts when it is not firing. The s output
has the complementary or opposite voltages. Each neu-
ron occupies a different column, and vertical s and s
lines run down each column from the outputs of the
neurons therein. The horizontal in and in lines connect
the neuron inputs to the outputs of one or more other
neurons. These output lines s and s are connected to the
inputs of all other neurons through the weight resistors,
for example 5, which bridge the output and input lines
of each pair of neurons. For positive synaptic weights
connectmg any two neurons, for example neurons i and
J» sy would be connected to in; or s; to inj. For negative
weights, s; would be connected to in; or s;jto in;. A posi-
tive synaptic weight is an excitatory input which tends
to fire the neuron and a negative weight is an inhibitory
input which tends to keep the neuron in the “off” state.
The neuron labelled “true” is permanently “on” to
provide a fixed voltage at its s output. The weights
leading from the true neuron to the active neurons rep-
resent the negative of the thresholds, —6. Thus the
resistive weight 7 applies to one of the inputs of neuron
j a voltage equal in magnitude to the desired threshold
of this neuron. If this threshold is applied to the nega-
tive or in;j input of neuron j by closing switch 18 the
algebraic sum of all the other inputs from the neurons
connected thereto must equal or exceed this threshold
before the neuron fires. Thus this is a positive threshold.
If switch 16 is closed and 18 opened, the threshold
would be negative. Thus the threshold becomes just one
of many of the neurons inputs. The neurons are all de-
signed with their steps at zero input volts, which means
that if the algebraic sum of the inputs, including the
threshold input, is below zero, the neuron will be “off”’
and if the sum is above zero, the neuron will be “on

All of the synapses of FIG. 1 are similar and synapse
W1; which connects the output of neuron 1 to the input
of neuron i will be described in detail. The resistive
weight 5 is connected at one end to the negative input
line in; or neuron i. The other end of 5 can be connected
to either the positive (s1) or negative (s; output of neu-
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ron 1 depending on which one of the two switches 12 or
14 is closed. Similarly, weight 6 can be connected from
either sy or s to in;depending on whether switch 8 or 10
is closed. Thus by closing one of these four switches,
either a negative or positive weight or synapse can be
implemented and a desired combination of the output of
neuron 1 to the input of neuron i can be achieved. Addi-
tional details of the operation of these adjustable weight
synapses are shown in FIG. 5.

FIG. 3 shows a typical transfer characteristic of a
neuron which comprises a differential amplifier, which
neuron is preferred for the neuron network of the pres-
ent invention. This transfer characteristic is of the step
or bistable type in which the neuron is “off” if the net
input voltage at its two inputs is less than zero and “on
if it is above zero. An ideal step function neuron would
have a vertical step between the “on” and “off” states
but practical circuits will exhibit a narrow transition
area between these two states, as illustrated in FIG. 3.
During annealing, the Gaussian noise signal may cause
the neuron to switch states. For example, if the alge-
braic sum of the neuron inputs, including the threshold,
is close to zero, a small noise peak can cause a change of
states. Also, if the same algebraic sum is either substan-
tially above or below zero, a high amplitude noise pulse
can cause a change of state. As stated above, the per-
turbing of a step threshold with Gausian noise yields an
approximately sigmoidal probability distribution.

FIG. 4 is a block diagram of each of the differential-
amplifier type which may comprise the present net-
work, including its noise source. The differential ampli-
fier 9 has plus and minus inputs to which the weighted
inputs 4V, and —V, are applied. These are the inputs
from the outputs of all other connected neurons and
from the true neuron. The variable-gain amplifier 17
receives a noise generated in its input resistor. The gain
of amplifier 17 is controlled by a signal from ramp signal
generator 21, shown with a ramp wave form which
starts high and decreases to zero. This signal thus pro-
vides a large initial noise voltage at the output of 17.
The annealing time may be problem-dependent, thus it
is advisable that the signal of generator 21 be supplied
from an external source. The differential amplifier 15
has the ramp-noise signal from 17 applied to its plus
input and a dc reference voltage to its negative input.
The push-pull noise outputs from 15 are added to the
outputs of amplifier 9 in summing nodes 11 and 13. The
summed signals from 11 and 13 are applied to the plus
and minus inputs of differential amplifier 23, the single
output which is applied to control circuit 25. The in-
verted output s appears at the output of inverter 27 and
the output s at the output inverter 29. The two inverters
are connected in cascade, as shown. The circuit 25 is
used to clamp the neuron in either of its states when an
external “clamp” signal is applied thereto together with
the desired clamping state (S desired). These two sig-
nals are labeled 20.

At the positive input of such a differential neuron
there is a total synaptic conductance tending to pull up
to voltage V,,, representing the absolute value of the
sum of positive weights from neurons whose state is
“on” and negative weights from neurons which are
“off””. The conductance pulling down to Vyzsums the
negative weight from “on” neurons and positive
weights from “off” neurons. At the negative input, the
pull up and pull-down conductances are interchanged.
Therefore at neuron i we have the comparison
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(13)
b3 i>0
Jisoff IW,tt > 0|
If we adopt the convention sj= + 1 if the neuron is “on”
and sj=—1if it is “off”, and if we remember that one of
the weights to neuron i is from the true unit with w;
true= —@;, this reduces to;

Z o |wp>0p 4 2 fwp<0] > Z |wi<Of +
Jispon Jispoff J:spon

? wigsi > 0; (14)
for the comparison. This just implements the threshold
rule of Eq. (1), as desired.

Note that this could be done by comparing the +
input against a threshold of (Vn+ Vo) but this would
require perfectly matched transistors. The complemen-
tary differential nature assures symmetry even if the
match is imperfect, thus shifting the operating point
slightly from the center of the voltage range. The differ-
ential amplifier circuitry also rejects common mode
noise which is later added in a controlled way.

FIG. 5 shows logic and control circuitry which
would be provided on the VLSI chip to automatically
change the synaptic weights following the application
of each set of input-output training sets or patterns to
the network. If a weight change is indicated by the
correlation data the synaptic weights are changed by
plus or minus one unit of conductance. The synapses for
connecting the output of neuron i to the input of neuron
jare indicated as wjand the reciprocal synaptic connec-
tions for the same pair of neurons are indicated as wji.
The synapse wj comprises two sets of field effect tran-
sistors (FETs) with their source-drain circuits con-
nected in parallel, so that each set of FETs comprises an
adjustable synaptic weight. For example, the source-
drain circuits of FETs Qq, Q1, . . - Qr—1 of synapse 31
are connected in parallel from line in; to transistors
Qscnyand Qsgn. The paralleled transistors have sizes or
conductances with ratios of 1:2:4:8, etc., so that the total
parallel resistance (or conductance) can have 2R digital
values, depending on which combination of the R paral-
lel transistors is switched on by signals applied to the
gate electrodes thereof. The FET Qscgn of synapse 31
connects the paralleled tramsistors thereof to the posi-
tive output s; of neuron j, and thus, when this transistor
is switched on by a positive signal at its gate, a positive
synapse results between s;jand in;. If the transistor Qsgny
of synapse 31 is similarly switched on, a negative syn-
apse results between s;and in;. The other synapse 35 of
wj; is similar. If transistor Qsgn of synapse 35 is gated
on, s;will be connected to in; to form a negative synapse.
If Qsgn is gated on, a positive synapse results which
connects s; to in;. The other synapse wj; is similar in
circuitry and function to wj;.

A set of R+1 lines 47 and 48 runs throughout the
chip and is connected to each control circuit, such as
control circuit 43, which is associated with each syn-
apse pair. The lines 47 and 48 comprise a sign line SGN
and R binary bit lines. The signals on these lines are
used to set the synaptic weights prior to learning and
can also be used for reading them out after learning.
The control circuit has its outputs connected to each of
the stages of Up-Down counter 45, which counter con-
trols the conductivity of the FETs which determine the
synaptic weights. The counter comprises sign stage
SGN and R stages O-(R—1) for synaptic magnitude.
The outputs of counter 45 are connected to the gate
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electrodes of all four sets of the transistors Qo—QRr -1,
as shown and to lines 48.

When setting the initial synaptic weight, an R+1 bit
signal is applied to lines 47 together with a strobe or
control pulse which may form one of the inputs of cor-
relation logic circuit 41. These R+1 bits will pass
through circuit 43 and will be applied to the stages of
counter 45 in parallel. Upon the occurrence of the next
strobe pulse, the contents of counter 45 will be shifted
out via lines 48 to the next control circuit of the net-
work to be loaded into its counter corresponding to
counter 45. Thus the initializing bits are shifted through
the network and when the Up-Down counter of the
final control circuit is reached, each synapse will have
been set to its desired value. Thus the lines 47, 48 and all
of the counters like 45 throughout the network com-
prise a shift register during the initialization.

The biary values of the Q(SGN) and Q(SGN) outputs
of counter 45 determine which sign of the synapses 31
or 35 of wj;and 33 or 37 of wjjare utilized. The synaptic
weight magnitudes of all these synapses are the same for
any given reading of counter 45. If, for example, the
synaptic sign is positive, Q(SGN) would be binary one
and Q(SGN) binary zero. For such positive synapse s;
will connect to in; and s; will connect to in;. The FET
Q(SGN) acting as a switch would therefore be “on” or
conducting if Q(SGN) from counter 45 is binary one
and “off” or non-conducting if Q(SGN) from the
counter is binary zero. The FET Q(SGN) would have
the complementary sense. Therefore synapse 31 will
connect to s; while synapse 35 will connect to s;. Simi-
larly, if QSGN is binary one and Q(SGN) binary zero,
a negative synapse would result. In that case s; will
connect to in; and s; will connect to in;.

The correlation logic 41 comprises circuitry for mea-
suring the correlation of the connected neurons i and j,
following each cycle of annealing. The positive phase
correlation, C+, occurs after the plus phase annealing
cycle during which both input and output neurons are
clamped, and the negative corelation, C—, follows the
negative phase annealing cycle during which only the
input neurons are clamped. These correlations will be
positive or +1 if the two connected neurons are in the
same state and negative or —1 if they are in different
states. Thus this correlation can be performed by a
simple Exclusive-Or gate to which the neurons outputs
s;and s;, are applied. The logic circuit 41 contains cir-
cuitry for storing the results of the plus phase correla-
tion, to determine whether the synaptic weights should
be increased, decreased or left unchanged. In accor-
dance with the modified and simplified Boltzmann algo-
rithm utilized in the present invention, if the two corre-
lations are the same, the weights are unchanged, if the
positive phase correlation is greater than the negative
phase correlation a single binary bit increase in the
synaptic weight is required. For the opposite conditions
wherein the positive phase correlation is the smaller of
the two, the register 45 is decremented by one binary bit
to similarly decrement each synapse. Simple logic cir-
cuitry can accomplish these operations to yield the
increment or decrement signals on lines 46 which con-
trol the reading of Up-Down counter 45. The neuron

_ state lines s;and s;are applied to logic circuit 41 together

65

with other control leads 49, 51, and 53, for carrying
phase information (plus or minus) and various strobe or
control signals.

It is apparent that the simplified learning algorithm of
the present invention in which only the states of each
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pair of connected neurons are correlated following each
plus and minus phase of the training patterns is a much
simpler one than the original or conventional Bolt-
zmann algorithm. Implementing the original Boltzmann
algorithm would require more complex circuitry as
well as more operating time.

FIG. 6 shows the circuitry for symmetrically inter-
connecting a pair of neurons N1 and N2. These neurons
are shown as having single inputs, in. These neurons
may comprise single-input high-gain operational-type
amplifiers which are biased to yield a step at approxi-
mately zero input voltage, so that the outputs sy1 and
san thereof will be zero if the algebraic sum of the inputs
is below zero and some positive voltage, e.g. +5 volts,
if the total input voltage exceeds zero. The inverse
outputs 5x1 and sz will exhibit the inverse of the volt-
ages at the aforementioned direct or uninverted outputs.
The neuron N1 is shown symmetrically connected to
two other neurons, N3 and N4 and the neuron N2 is
similarly connected to two other neurons NS and N6.

The input resistor 71 of neuron N1 has applied
thereto a threshold current from the true variable resis-
tor (or synapse) 61 to which a fixed voltage is applied
from a line labeled “True”. This true voltage may be
positive or negative and is selected as the opposite po-
larity of the desired threshold voltage of the neuron, as
explained above. The input resistor 71 or N1 receives
inputs from the outputs of neurons N3 and N4 (not
shown) via the synapses w31 and w4y, respectively. The
noise generator 75 comprises noise source 19 and varia-
ble-gain amplifier 17 and signal generator 21. The am-
plifier 17 produces an output which is applied to the
input resistor of N1 during each annealing cycle. The
signal generator 21 may be external to the chip and
common to all of the noise generators of the network.

The output impedance of all the neurons is made low
so that the current applied to the input resistors through
each of the resistive synapses is proportional to the
synaptic weight or conductance. Thus the input resis-
tors, such as 71 and 73 perform an analog addition
through the use of very simple circuitry. Further, all of
this analog addition takes place simultaneously without
the necessity of any network-wide (or global) control
signals.

In FIG. 6, wiy is the direct synapse connecting the
uninverted output sy of N1 to the input of N2, and w3
is the reciprocal synapse connecting the output sy of
N2 to the input N1. The circuit 65 and lines 67 comprise
the digital logic, control and counter circuits shown in
more detail in FIG. 5. The lines 47 and 48 comprise the
network-wide lines which are used to set the synapse
weights and read out these weights. The threshold for
N2 is supplied by weight 63 which connects a true
neuron. The output sy of N1 has the synapse w13 con-
nected thereto. This synapse connects to the input of
neuron N3, not shown. Synapse w14 connects the output
of N1 to the input of N4, not shown. Synapses w6 and
w35 connect the outputs of N2 to the inputs, respec-
tively, of N6 and N5, not shown. The noise generator 77
is connected to the input of N2.

The neurons of FIG. 6 have no clamping circuits and
thus it would comprise one of the hidden pairs of neu-
rons. The neuron pairs of the input and output layers
would be the same as FIG. 6 with the addition of the
clamping circuitry illustrated in FIG. 4.

While differential amplifier type neurons are pre-
ferred for this invention for reasons stated above, the
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single-input amplifier of FIG. 6 can also be used to
advantage in practicing the invention.
While the invention has been described in connection
with illustrative embodiments, obvious variations
therein will be apparent to those skilled in the art with-
out the exercise of invention, accordingly the invention
should be limited only by the scope of the appending
claims.
What is claimed is:
1. A neuron network comprising interconnected in-
put, hidden and output layers of neurons, said neurons
comprising “on-off”’ or threshold electronic devices,
all of said neurons which are connected being sym-
metrically connected by means of automatically-
adjustable synapse pairs, each of said synapses
comprises a plurality of drain-source circuits of
field effect tramsistors, said source-drain circuits
having resistances or conductances which differ
from each other by ratios of 2 to 1,

whereby different combinations of said source-drain
circuits can be switched in parallel to provide any
resistance or conductance, in a binary sequence, for
each of said synapses, said synapses being con-
trolled by the output of an Up-Down counter, and

means to control the reading of said counter depend-
ing on the results of a correlation of the states of
each connected pair of said neurons following the
application of sets of training signals to said neu-
rons network.

2. The network of claim 1 wherein each neuron is
provided with a circuit for accomplishing simulated
annealing, said circuit comprising means to perturb the
threshold of each of said neurons by means of amplified
thermal noise which, during each annealing cycle, starts
at a high amplitude and decreases in ramp-fashion to a
zero amplitude, whereby the network simultaneously
relaxes to a state of minimum energy during the applica-
tion of said training signals.

3. The network of claim 1 wherein each of said neu-
rons comprises a differential amplifier.

4. An electronic neuron network comprising a plural-
ity of step-function or “on-off” electronic neurons ar-
ranged in input, hidden and output layers, which neu-
rons comprise differential amplifiers,

selected pairs of the neurons of said network being

connected by means of pairs of synapses,

digital control circuitry for automatically varying the

synaptic weight of each of the synapses of said
pairs of synapses, in unison,

means to apply plus and minus phase training patterns

to the neurons in the input and output layers of said
network,

means to apply uncorrelated Gaussian thermal noise

to each of said neurons to accomplish simulated -
annealing during the application of said plus and
minus phase training patterns, said noise varying in
ramp-fashion from a high to a low amplitude dur-
ing each annealing cycle,

and a logic circuit provided for each connected pair

of neurons, said logic circuit comprising means to
measure the correlation of each of the said plus and
minus phase training patterns and means to control
said digital control circuitry in accordance with the
results of said correlations.

5. The network of claim 4 wherein said synaptic
weights comprise the source-drain circuits of a plurality
of field effect transistors of different resistances or con-
ductances with a conductance sequence of 1:2:4 etc.,



4,874,963

17
and wherein the synaptic weights are varied by switch-
ing different combinations of said source-drain circuits
in parallel.

6. A neuron network comprising,

a plurality of step neurons,

means to symmetrically connect said neurons by

means of direct and reciprocal variable-weight
synapses,

means to apply sets of training signals to selected ones

of the neurons of said network,

each of said neurons being provided with a separate

and thus uncorrelated source of thermal noise,
means to apply said thermal noise to each of said
neurons to accomplish simulated annealing of said
network during the application of each of said
training signals,

means to correlate the states of said connected neu-

rons following the application of each of said train-
ing signals, and

means to automatically adjust said synapses in re-

sponse to said correlations.

7. The network of claim 6 wherein each of said neu-
rons comprises a differential amplifier with the step
therein at zero differential input volts and wherein one
input of each of said neurons comprises a threshold
voltage which is the inverse of the desired threshold of
that neuron, said threshold voltage being derived from
a permanently “on” true neuron.

8. A method for teaching a neuron network to recog-
nize input patterns repeatedly applied thereto, which
network utilizes simulated annealing to relax to a state
of low energy, said method comprising the steps of;
correlating the states of each pair of connected neurons
following each cycle of simulated annealing, then ad-
justing the synaptic weights of each of said pairs of
neurons by the minimum step of said synaptic weight
using only the correlation data obtained from said con-
nected pairs of neurons.

9. A neuron network comprising input, hidden and
output layers of neurons, said neurons comprising “on-
off” or bistable electronic devices, and wherein all con-
nected neuron pairs are symmetrically connected by
means of pairs of automatically adjustable resistors
which comprise synapses of adjustable weight;

means to sequentially apply plus and minus phase

training signals to said network,

means to achieve simulated annealing of said network

during the application of said training signals,
each pair of connected neurons having associated
therewith a logic and control circuit for obtaining
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correlation figures related to the states of each of
said pairs of connected neurons following the simu-
lated annealing of said network during each appli-
cation of said plus and minus training signals, said
correlation figures being positive (+ 1) if the states
of said two connected neurons are both the same
and negative (— 1) if the states thereof are different,
and

an Up-Down counter controlled by said control cir-

cuit, said counter controlling the weight of each of
said pair of synapses,

said logic and control circuitry comprising means to

increment said counter and said synaptic weights if
the said correlation following said plus phase is
greater than the said correlation following said
minus phase, and also means to decrement the read-
ing of said counter and the weight of each said pair
of synapses if the correlation following said plus
phase is less than the said correlation following said
minus phase, and leaving said synaptic weights
unchanged if the said plus and minus correlations
are the same.

10. A neuron network comprising bistable electronic
neurons, means to sequentially apply plus and minus
phase training signals to said network, means to apply a
different electronically-generated noise signal to each of
said neurons during each application of said plus and
minus phase training signals, each pair of connected
neurons being connected by means of adjustable-weight
synapses, and means to automatically adjust the synap-
tic weights of each of said pairs of connected neurons
following each cycle of application of said training
signals by comparing only the correlation of the states
of each said connected neuron pair.

11. A neuron network adapted to utilize a Boltzmann
algorithm to accomplish learning, said network com-
prising means for performing simulated annealing, said
means comprising separate electronic noise generators
connected to the inputs of each neuron in said network,
the amplitude of the noise output of said noise genera-
tors being adjustable to accomplish simulated annealing.

12. The network of claim 11 wherein said noise gen-
erators comprise a thermal noise source which is con-
nected to the input of a variable-gain amplifier, the gain
of said amplifier being controlled by a ramp signal gen-
erator which during each annealing cycle starts at a
high voltage and decreases to a low voltage, whereby
the noise at the output of said amplifier starts out with a

high amplitude and decreases toward zero amplitude.
* x* * * *
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