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Appendix

Figure  A.1: The Analytical Engine developed by Charles Babbage is regarded as the first programmable calculating
machine. (check permission)

 A.1. Information TheoryWe have de�ned information as something whi
h 
hanges the behavior of a system whi
h re
eives it.It is diÆ
ult to spe
ify exa
tly what those 
riti
al fa
tors will be but to the extent that we 
an spe
ifythem, we may be able to �gure out how to transit them. Information 
an also be de�ned as sele
tingone alternative from among several others. Transmission of representations though that isn't alwaystransmission of ri
h information.If we 
an �gure out what needs to be transmitted, we 
an determine the number of bits required totransmit them optimally. Examples of the surprising-ness of information. Being noti�ed that you havewon the lottery is truly surprising sin
e the 
han
e of that is quite small. There is a wide range ofappli
ations for Information Theory. Though, it is diÆ
ult to understand how mu
h information isbeing transmitted without knowing how the information is represented.
Figure  A.2: At least representations can be coded and transmitted in terms of bits. If they can be unpacked as they
were encoded, then there can be perfect information transfer. But, of course, not two people will not have the same
encoding and decoding systems.

 A.1.1. Measuring Information: EntropyFor 
ommuni
ation systems, it is desirable to en
ode as mu
h information as possible into a narrow
hannel. This was the basis of the simple information transfer model of 
ommuni
ation. We wantto determine the most 
ompa
t representation for a message. This is useful for instan
e, for data
ompression, data storage, and for Hidden-Markov Models (11.3.3,  A.5.5). Given a vo
abulary, we 
an
al
ulate the fewest number of bits needed to transmit a message [68].In 
omplex environments, is it really possible to measure information?Suppose we had a group of four people and we had to pi
k one of them (Fig.  A.3). Assuming they areequally likely to be pi
ked, the probability would be 0.25. We would use Code1 or Code2 and we would
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e the log is usually base2, information is usually measured in bits.Indeed, the word \bit" is derived from the phrase \binary information unit".
Distribution1

Person Probability Code1 Code2

Abu 0.25 1000 00
Bob 0.25 0100 01
Cathy 0.25 0010 10
Dwayne 0.25 0001 11

Figure  A.3: Two coding systems for identifying which of four individuals might be selected in a lottery.The self-information of a message is related to probability of that message; that is, how likely orpredi
table that message is (Eq.  A.1).
I(m) = −logP (m) ( A.1)\Entropy" is a measure of the disorder of a system o set of messages (Eq.  A.2). For the data inFig.  A.3, the entropy is H = X. Be
ause ea
h person is equally likely to be pi
ked, we 
annot do anybetter than 
han
e in guessing who that person is. However, this also means that the 
odes we use toidentify the person 
an be very eÆ
ient. For the probabilities in Distribution2 (Fig.  A.4), the entropyis H = 1.8 and the 
odes to indi
ate whi
h of them has been sele
ted are not as eÆ
ient as those for

Distribution1.
H(X) = −

k
∑

i=1

P (xi)log2P (xi) ( A.2)

Distribution2

Person Probability

Abu 0.40
Bob 0.15
Cathy 0.10
Dwayne 0.35

Figure  A.4: Unequal probabilities of being selected, as shown here, have lower entropy than equal probabilities
(shown in Fig.  A.3).Perplexity.Another way to think of entropy is as an indi
ator of the average \surprise" of the 
hoi
es. When theprobabilities of all 
hoi
es are equal, as in Distribution1, the level of surprise is maximized. Anotherway to look at this is ask what is the additional value 
ontributed by a given sour
e of information.Maximum entropy. Knowledge at the re
eiver's end 
an 
ompress information mu
h more.

H(X, Y ) = ( A.3)Mutual information.Information valuation. Bayesian models for de
iding how mu
h to value information sour
es.
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 A.1.2. Communication ChannelsOn
e we have a measure of information, we 
an 
ompare the amount of information able to be trans-mitted on di�erent 
hannels (Fig.  A.5). Communi
ation models ((se
:
ommuni
ationmdoels)). Wemight ask how mu
h information 
an be transmitted with a �xed number of bits in a 
ommuni
ation
hannel. The bits able to be transmitted per unit of time, is the 
hannel 
apa
ity whi
h is also knownas the \bandwidth".
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Figure  A.5: Information transfer (adapted from[68]). (check permission)It is possible to 
al
ulate bits of information based on assumptions about the re
eiver's 
apabilities.If the 
ommuni
ation 
hannel is imperfe
t (e.g., noisy), we 
ould 
al
ulate how mu
h information 
anbe transmitted. Signal pro
essing equations 
an be used to support tasks su
h as spee
h-pro
essing
(11.3.3) and evaluating the quality of ma
hine translation (10.13.1). Spe
i�
ally, we 
an model translationas a noisy 
hannel between a sour
e and a re
eiver [9].
 A.1.3. Applications of Information TheoryAppli
ations Sensor networks.Can we really measure information and meaning in people's heads? Can we even usefully measure howmu
h information there is in a 
omplex information su
h as a book or a videotape by measuring thenumber of bits in a digital 
opy of that resour
e?

The Redundancy of Natural LanguageNatural language is highly redundant. Put another way, every letter, phoneme, or word is not totallysurprising. You should be able to make a good guess about the missing word in the senten
e: \Youare reading a book about Information ". Redundan
y in natural language prevents misunder-standing. the amount of redundan
y in natural language is related to perplexity. Can we estimate theamount of redundan
y.Language is, e�e
tively, a 
oding system. Several approximations to English are shown in Fig.  A.6.These approximations are based on the likelihood of letter and word 
ombinations. One appli
ation isto ma
hine language translation (10.13.1).
Level Example Approximation

First order
Word level

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME
TO FURNISHES THE LINE MESSAGE HAD BE THESE.

Second order
Word level

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UN-
EXPECTED.

Figure  A.6: N-gram approximations to English[67]. (check permission)N-grams are parti
ularly useful for spee
h pro
essing where the sequen
es of phonemes is highly pre-di
tive of spe
i�
 words.
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ode
 A.2. CompressionThe 
ontent in almost all information resour
es is redundant and 
an be 
ompressed. Most often thisis done to redu
e the amount of material whi
h has to be transmitted or stored. Compression is a typeof representation, but it is generally not a representation from whi
h semanti
s 
an be easily extra
ted.Information theory ( A.1.0) 
an measure the e�e
tiveness of the 
ompression.
 A.2.1. Issues for Compression

What Makes a Good Compression Scheme?There are many options in 
ompression; as with other aspe
ts of information systems, the sele
tion ofthese options depends on the requirements of the users. There is a 
lose 
onne
tion between 
ompressionand the preservation of meaning.
Efficiency Two main types of 
ompression are termed lossless and lossy. If it is possible to get anexa
t 
opy of an image ba
k after 
ompression, then the 
ompression is \lossless". If something is lostso that it is not possible to retrieve an exa
t 
opy, then the 
ompression is \lossy". Most 
ompressionalgorithms are lossy.Codes and 
ompression. Fixed 
ode length versus variable 
ode length.We 
an measure 
ompression by the \
ompression ratio," whi
h is the ratio of the size of the �le before
ompression to its size after 
ompression.Codebook.Adaptive 
ompressions. Self-
orre
ting 
odes.
Content Dependencies Some 
ompression s
hemes are good for spe
i�
 
ontent. GIF 
ompressionworks parti
ularly well for line drawings while JPEG 
ompressions are espe
ially good for full-
olorimages. Compression needs for astronomy or medi
al images are very di�erent from those for videogames.The amount of variability in 
ontent will a�e
t 
ompression needs.Self-referential 
odes.To the extent that a 
ompression s
heme 
aptures semanti
ally meaningful events.some of the semanti
s 
an be extra
ted from the 
ompressed formats. Therefore, the 
ompressedrepresentation may also be useful for retrieval.
Delivery, Storage, and Decompression Robust to pa
ket loss.[??]Some storage devi
es (e.g., CDROM) and some networks (e.g., modems on voi
e telephone networks)deliver �xed data rates. Other systems deliver variable-bit rates (VBR).A system 
an provide real-time delivery, or may be real-time intera
tive.Layers of multimedia are prioritized. Compression mat
hed with priority for transmission.The re
ipient has to know how to de
ompress the message.Compression and de
ompression take up a 
ertain amount of 
omputational resour
es; the right ap-proa
h 
an optimize results.One might opt for software 
ompression or hardware 
ompression.



 A.2. Compression 509Tradeo�s are made regarding, for example, the amount of disk spa
e used versus the speed of sear
hes.\Trans
oding" is the transfer from one 
ompression system to another one. However, there 
an be asubstantial loss of quality in the pro
ess.
Two Paradigms for CompressionCompression may be thought of as a type of representation (1.1.2). An optimal 
ompression would bebased on human per
eption and information pro
essing, but algorithmi
 
ompression may not seemto be based on the semanti
s of the material being 
ompressed. The 
ompressed signals ne
essarilyfollow the 
hara
teristi
s of the 
ontent. Spee
h signals in a telephone are based on the range of spee
hne
essary for spee
h 
omprehension. Be
ause 
ompression often 
auses loss of 
ontent, the issue is howto minimize that loss in 
omprehensibility. These di�eren
es 
an be understood in terms of InformationTheory ( A.1.0).

 A.2.2. Text Coding and CompressionCompression of the message. Text 
ompression tends to emphasize lossless 
ompression te
hniquesbe
ause there is relatively little data and any loss 
an be signi�
ant. However, there may not be toomu
h need for this sin
e is it 
heap to transmit text.Many 
oding systems have been developed. Hu�man Coding and Hu�man Trees. Earlier, we 
omparedthe entropy of 
oding two sets of events with a two-bit 
ode ( A.1.0). Hu�man 
odes attempt to mat
hthe length of a 
ode with the frequen
y of its o

urren
e in the family of messages to be transmitted.If we are transmitting letters, given that the letter \e" is the most 
ommon letter in English, it wouldbe the shortest term (Fig.  A.7).A se
ond version of this 
an be seen in Fig. ??. Letter and frequen
y (Korfage example).
Distribution3

letter Probability Code1

e 0.675 1
i 0.125 01
o 0.125 10
l 0.125 11

Figure  A.7: An example of a Huffman Code in which high probability items are given short codes. (check values)

 A.2.3. Image Processing and CompressionCoding | 
ompression - formats. Pi
torial material 
omes in many forms and the optimal 
oding forthose varying s
hemes 
an be very di�erent. A bla
k-and-white line drawing will have very di�erent
ompression 
hara
teristi
s from those of a 
omplex 
olored photograph. Bitmaps of text as for OCR.
[??] Displays and printing te
hnology are des
ribed in  A.18.2.Edge dete
tion, shape dete
tion, textures.In run-length en
oding, the sequen
e B,B,B,B,B,B,A,A,A 
ould be en
oded as 6B3A That is six repe-titions of B followed by three repetitions of A.The te
hnology for handling still images is now fairly well established. They are easy to digitize,
ompress, transmit, and embed in do
uments.Visual words.Obje
t dete
tion te
hniques (11.2.2) are similar to those used for still images.

Digital Encoding of ImagesIn a bla
k-and-white image, only the brightness of pixels is measured. Gray s
ale. Color depth(Fig.  A.8).
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Pixels
R G B Visible Color

0 0 0 Black
256 0 0 Red

0 256 0 Green
0 0 256 Blue

256 256 256 White

Figure  A.8: All possible colors can be coded as levels of Red (R), Green (G), and Blue (B). 8 bits is often used for
each coding each of these base colors allowing 256 shades of each one.As noted earlier (4.2.3), human 
olor per
eption is 
omplex. A variety of systems have been developedfor 
oding 
olors. Some are based on the human per
eptual system (su
h as HSL) and some are basedon te
hnologi
al 
onvenien
e (su
h as RGB). The most 
ommon system is RGB (red, green, and blue).The HSL system deals with hue, saturation, and luminan
e; some 
laim that it is 
loser to the humanvisual system as explained in 4.2.3, above. Still another system is YIV; Y stands for luminan
e, I forthe red-
yan dimension, and V for the green-magenta dimension. YUV is used for broad
ast television;here, Y = luminan
e, U = blue-Y, V = red-Y.One element in 
olor 
oding is the way the 
olors are distributed on the 
olor spa
e; another element,
olor depth, refers to the number of bits allo
ated for the representation of ea
h 
olor. One 
ommonsystem uses one byte (8 bits) assigned to ea
h of the red, green, and blue 
hannels. This allows en
odingof 2563 (65K) 
olors.

Image Processing of PixelsThis kind of pro
essing is not obje
t-based. The quality of the image 
an be improved by adaptingpixels. From pixels to image pro
essing.Some spe
ialized pro
essing is model-based.Noise suppression.Get a signal.[??]DitheringImage re
ognition.Content based image retrieval. CBIR.
Image CompressionImage 
ompression redu
es the amount of data ne
essary to reprodu
e images. This fa
ilitates storingdata on a disk or sending it over a network. Ideally, we 
ould �nd a small set of data and a fewsimple parameters that des
ribe the 
omplexity of an image. There is a great deal of redundan
y inmost images and this redundan
y 
an be used in many ways to 
ompress the image. Adja
ent pixelsare often similar in 
olor. This 
an be used to take advantage of lossless 
ompression with run-lengthen
oding similar to that des
ribed for text ( A.2.3). TIFF 
ompression is lossless.
Lempel-Ziv-Welch (LZW) GIF images use the Lempel-Ziv-Wel
h (LZW) algorithm whi
h is based onprobability fun
tions.
Discrete Cosine Transformation (DCT) Dis
rete Cosine Transformation (DCT) 
onverts the 
olors ofthe image to frequen
ies. DCT is like Fourier transformations ( A.2.4). Low frequen
ies en
ode thedominant 
olors and higher frequen
ies en
ode the transitions.
Wavelets Wavelets are similar to DCT in 
hara
terizing an image on its frequen
ies. They are alsosimilar to Fourier 
ompression ( A.2.4). However, DWT Wavelets are more 
exible in representing obje
ts
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 fun
tions in DCT.
Fractal Compression Fra
tal 
ompression uses repeated appli
ation of an algorithm to approximatethe original image ( A.10.2), whi
h is generated by re
ursive appli
ation of the program.Transformations: rotation, dilation, re
e
tion
Image FormatsBeyond the 
ompression algorithm applied to individual frames, a wide range of 
ompressed imageformats has been developed, a few of whi
h are in widespread use. JPEG and GIF are the most 
ommonformats and will be 
onsidered here. Graphi
 Inter
hange Format (GIF) uses the LZW algorithm. TheGIF spe
i�
ation in
ludes 
omposite images. These 
an be used to 
reate apparent motion in an imageand are known as animated GIFs.The JPEG (Joint Pi
ture Experts Group) format is blo
ky.Typi
al 
ompression ratios for JPEG are on the order of ..[??] A 100KB �le might be redu
ed to 10KB.There are several levels of quality for JPEG images and the quality sele
ted will a�e
t the amountof 
ompression. JPEG is generally better than GIF for 
olor pi
tures be
ause the underlying DCTtransformation allows a wider variety of transitions to be represented.
Transmission Progressive transmission allows displays of varying qualities as they are re
eived a
rossa network. Thus, a partial version of the image 
an be displayed before the transmission is 
ompleted.This sometimes works as interla
ing.

Example: JPEG-18x8 pixel blo
ks. Sli
es,[73] has a detailed dis
ussion of the JPEG standard and a good overview of other
ompression te
hniques. Dis
rete Cosine Transform (DCT, as des
ribed below). Quantized Q-matrix.
Example: JPEG-2Obje
t-based.[??]

Scene Recognition

 A.2.4. Audio Processing, Compression, and Coding
Audio Coding and Compression AlgorithmsThe 
hoi
e of the 
oding algorithm depends on what is being en
oded and the environment in whi
hthe it has to operate. The two most important appli
ations for audio are spee
h and musi
. Thereare large di�eren
es in the en
oding requirements between musi
 and spee
h. Spee
h has a relativelynarrow dynami
 range while musi
 may vary to a mu
h greater extent. Some 
odes must operate inenvironments where some of the data is lost during transmission.Sound waves are 
onverted to analog ele
tri
al signals by a mi
rophone. To 
reate digital audio, theseanalog signals must be 
onverted to numeri
 values. There must be an analog-to-digital 
onversion(AtoD). AtoD 
onversion is also known as Pulse Code Modulation (PCM); it involves two steps: sam-pling and quantization. Sampling is the number of times a signal is 
oded per se
ond. To get a full
oding of a signal, it must be sampled at twi
e its frequen
y. On
e the signal is sampled, it must beassigned a numeri
 value whi
h 
an be represented in a 
omputer word. The 
ode is usually linear, but
an also be logarithmi
.Quantized digitized audio on a CD-ROM is not 
ompressed; the quantized samples are just stored asthey are 
oded. This simpli�es the ele
troni
s and there is no need to 
ontrol the rate of playba
k.When storage 
apa
ity is at a premium or network 
ongestion is a problem, 
ompression greatly redu
esthe amount of data to be stored. In 
ontrast to 
ompression, in whi
h the number of bits is 
onstantregardless of what is 
ontained in the audio �le, Variable Bit-Rate (VBR) 
oding uses total bits when
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Figure  A.9: An analog sound wave (left) can be digitized (center) and then it can be “quantized” to a limited number
of levels (right).the data are easily 
ompressed.As noted earlier, spee
h 
ontains phonemes whi
h appear as formants (11.3.3), relatively regular burstsof sound that are related to the meaning in the words. Linear predi
tive 
oding (LPC) estimates thepattern of these formants and 
odes them eÆ
iently for transmission (Fig. ??). These 
odes 
an beused to determine �lters. A variety of systems have been developed to make LPC 
oding more eÆ
ient.For instan
e, DPCM (Di�erential PCM) en
odes the di�eren
es between pulse 
ode samples. If thetones are steady, then little additional information needs to be transmitted. DPCM is analogous toframe di�eren
es for video ( A.2.5).

Audio Processing
Fourier Analysis The Fren
h mathemati
ian Joseph Fourier had the insight that 
omplex waves 
ouldbe des
ribed as a 
ombination of regular sine waves. Be
ause ea
h sine wave has a known frequen
y, aFourier analysis of spee
h shows the main frequen
ies in that spee
h. Fig. ?? shows the de
ompositionof a signal by Fourier analysis.This is the analysis des
ribed in the spe
trogram in Fig. 11.15. The frequen
y of spee
h 
hanges rapidlyas the person produ
es di�erent sounds. Chara
terizing these 
hanges in frequen
y is important forspee
h pro
essing (11.3.3). A parti
ularly useful fun
tion for determining the spe
trum is the Fast FourierTransform (FFT).
Compressed Audio Formats Beyond the spe
i�
 
ode
 used, data may be formatted so that it 
an bestored and transmitted. A CD has no 
ompression; the physi
al design of a CD is des
ribed in  A.20.1.Some 
ommon audio formats are U-law, WAV, and AIFF. While MPEG-2 is primarily a video standard,the MPEG-2 audio standard has been adopted for studio quality sound reprodu
tion. It has 64kbits/sper 
hannel with �ve main 
hannels (left, 
enter, right, and 2 for surround sound), and other spe
ialized
hannels, su
h as one for low frequen
ies.Se
ure Digital Musi
 Initiative (SDMI).[??]Spe
i�
ally, MP3 is audio layer 3 of the MPEG2 standard. The popular MP3 musi
 standard is partof MPEG2.

 A.2.5. Video Processing, Compression, and CodingVideo requires far more data than audio; therefore, 
ompression is parti
ularly important for networkingand storage. Additional dis
ussion of video networking and video displays is found in ( A.18.2).
Frame DifferencesIn a video, one frame is mu
h like the next. This means that they do not have to be presented separately.Frame di�eren
es in video often re
e
t the motion of obje
ts. Be
ause frame di�eren
es are widely usedin 
ompression algorithms, it is often possible to dete
t motions from 
ompressed video. The top panelsof Fig.  A.10 show an obje
t moving from left to right. The middle right panel shows the overlap ofthe two positions of the obje
t, and the lower right panel shows the frame di�eren
es.
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Figure  A.10: Consider a two-part object that moves as shown in the top two panels T1 and T2. If all Panel T1 is
transmitted by video, then all of T2 does not need to be transmitted; only the differences between the frames need
to be sent. The panel in the middle row shows the two frames superimposed on each other and the bottom panel
shows the differences in the two frames. Panel T2 can be generated from T1 by applying that difference. For this
example, the area in the open trapezoid should be reset to white while the black area needs to filled in (lower panel).
(smaller)

Digital Video Compression AlgorithmsFor digital video, the prin
iples of 
olor 
oding are similar to those for still images ( A.2.3), with the ad-dition of a temporal dimension. Code
s for the 
ompression and de
ompression of audio were des
ribedearlier; video is also 
ompressed and de
ompressed by 
ode
s.The e�e
tiveness of the 
ode
 depends on the 
ontext in whi
h it is being used. If there is a lot of a
tionin a video 
lip, then fresh frames may be most e�e
tive, but if the 
lip is just a head-and-ne
k-shot ofa person talking, then frame-di�eren
es should be suÆ
ient.
Forward DCT Only those pixels that 
hange from frame to frame need to be updated. This allowsonly the di�eren
es to be transmitted rather than all the pixels for every frame. There may be driftfrom the original pi
ture and the image will need to be refreshed by re-sending the entire 
urrent frame.This fresh frame is 
alled a \key frame" (in MPEG, they are known as I frames).
DCT DCT is like still-image en
oding. Entropy 
oding ( A.1.1).
3-D Fractal Video Compression Also 
ombines with bin-trees.
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Adaptive Algorithms As the name suggests, an adaptive algorithm adjusts to the type of 
ontent whi
his being 
ompressed, and hen
e involves more 
ontent-spe
i�
 
oding. MPEG-4 ((se
:mpeg4)).
Digital VideoThis se
tion 
onsiders several di�erent formats for digital video.

Version Brief Description Section

MPEG-1 1.5 MB/s video (PC quality) This section

MPEG-2 Studio quality video (45MB/s) This section

MPEG-4 Component descriptions This section

MPEG-7 Video content description 11.6.2

MPEG-21 Framework for services 7.8.4

MPEG-A

MPEG-V

Figure  A.11: Summary of MPEG standards.The MPEG-1 standard is for PC-quality video (less than 1.5MB/s). Fig.  A.13 shows an EG1 streamof frames and frame di�eren
es. The standard spe
i�es I, P, and B frames. The I frames are \keyframes"; they are essentially JPEG images. The B and P frames are obtained from frame di�eren
es(Fig.  A.12). De
oding in software is pra
ti
al; en
oding is 
omputationally expensive and often is notdone in real-time.
Frame Type Description

I frames They are JPEG ( A.2.3) images and are high-quality
reference frames. Transmission of these requires chan-
nel capacity. On some systems, these are called key
frames.

P frames forward compression

B frames use bi-directional (both forward and backward) com-
pression. These are particularly difficult to do in real
time.

Figure  A.12: Types of MPEG-1 frames as shown in Fig.  A.13.

Figure  A.13: Mix of frames in an MPEG-1 stream. (redraw-K) (check permission)

 A.3. Graph TheoryWe have seen many examples of graphs. Graphs are 
omposed of two types of obje
ts: nodes andlinks. We have seen appli
ations of graphs a
ross many of the topi
s in this book su
h as 
hara
terizinghypertext (2.6.3) and so
ial networks (5.1.0). Along with state ma
hines and grammars, graph theory isa part of a �eld 
alled dis
rete math.Fa
ebook equation. Tie strength.
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 A.3.1. Types of GraphsThe ma
ros
opi
 stru
ture of the graph 
an be
ome important for large graphs. Di�erent types ofgraphs have di�erent properties. When a number of nodes are 
onne
ted by links, the pattern of the
onne
tions may be 
hara
terized. Links in graphs may be dire
ted, that is, they allow 
onne
tions inone dire
tion but not in the other. The 
onne
tions of pages on the Web form a \dire
ted graph". Ifit is possible to get ba
k to a node by some route on
e it has been left, then the graph is said to have
y
les. If there are no 
y
les in dire
ted graphs, they are said to be \a
y
li
" and the full graph is saidto be a \dire
ted a
y
li
 graph" (DAG) (Fig.  A.15). Citation networks, for instan
e, are DAGs { time
ows in only one dire
tion.
Graph Any set of connected nodes.
Lattice
Directed graph Edges have a direction.
Tree Trees have only one path connecting any two nodes.

Figure  A.14: Types of graphs.

?
@
@R
@
@R

�
�	 ?

�
�	

�
�	
@
@R
�
�	

@
@R

?
�
�	
@
@R

�
�	 ? ?

@
@R

Figure  A.15: Directed graphs. On the left, is an acyclic graph, in this case a tree. On the right, a cyclic graph,
specifically it is a Directed Acyclic Graph (DAG).Cliques. Two types of nodes. Bipartate graphs Fig.  A.16

d d d d d
t t t t t

Figure  A.16: Bipartate graph.There are several types of trees su
h as ordered trees and minimum spanning trees. Trees may also beused to des
ribe sequen
es of obje
ts (e.g., PAT Trees).
 A.3.2. Graph SearchingMany problems su
h as de
ision spa
e or a problem spa
e require sear
h. Stru
tured sear
hing in datastru
tures su
h as binary trees. If there is no index, the graph must be sear
hed by following links andexamining nodes. One 
ommon trade-o� is between breadth-�rst and depth-�rst sear
hing (Fig.  A.17).Tree-sear
hing is useful, for example, in parsing.Several strategies for sear
hing graphs have been proposed. AI as graph sear
h (3.7.1,  A.7.3).Heuristi
. If value 
an be assigned at ea
h point, take the one �rst (Fig.  A.19) but there has to besome 
riterion for what is the t. Min-max pruning.The game of ti
-ta
-toe has a �nite number of solutions. Fig.  A.20 shows a game tree. This forms atree and positive out
omes 
an be sear
hed. Symmetri
al solutions are not shown. While the spa
e for
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Figure  A.17: Breadth-first (left) versus depth-first (right) searching. The numbers indicate the order in which the
nodes are searched.

Figure  A.18: If values are assigned to each node, those values can be used to guide the search. More complex
than simple depth-first and breadth-first search described above, branch-and-bound is t-first searching. As the tree
is explored, the likelihood of finding the target under each sub-tree is estimated and the node with the highest value
is opened. (redraw) (check permission)
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Figure  A.19: More complex than simple depth-first and breadth-first search described above, branch-and-bound is
t-first searching. As the tree is explored, the likelihood of finding the target under each sub-tree is estimated and the
node with the highest value is opened. (check permission)
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Figure  A.20: Fragment for moves in for tic-tac-toe forms a “game space”. Here just the first two moves of a game
are shown (other alternatives are symmetrical). We can estimate the value of each move by counting the number of
outcomes which lead to winning.ti
-ta
-toe is tra
table, the game spa
e for 
hess is far to large to even be 
al
ulated. Heuristi
s mighthelp estimate the value of possible alternatives.There are many 
riteria for sele
ting the value of nodes. Bran
h-and-bound ( A.3.2). MIN-MAX ( A.9.3).and sele
tion of responses. Insuran
e.Sear
hing knowledge stru
tures.
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 A.3.3. Graph AlgorithmsThere are many other topi
s in graph theory that we will 
onsider brie
y. General algorithms ( A.5.0).So, for Web 
hara
terization (2.6.3) or for validating the 
oheren
e of a Web site. Finding the pathsthrough a hypertext. These problems may be viewed abstra
tly as the 
onne
tions of nodes amongthem.Graph drawing plans the layout of graphs [20]. For instan
e, when laying out a data map or a 
ow
hart, the graph drawing pro
edure might attempt to minimize the number of 
rossings (Fig.  A.21)The goals would be to determine whether two graphs are identi
al in stru
ture. This in
ludes \graphmat
hing," \graph homology," and \graph 
ongruen
e".
Figure  A.21: Two ways of connecting five points. The approach on the left minimizes the length of the lines. While
on the right the number of crossings is minimized.Dynami
 graph layout and interfa
es. If a display is resized, what is the way to redraw a graph basedon it. [45], [52].One strategy for pruning would 
ut o� those links that do not 
onne
t to other links (Fig.  A.22).
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Figure  A.22: The graph on the left can be “pruned” to create the one on the right by eliminating those nodes that
are connected to only one other node. (check permission)Beyond pruning to \graph partitioning" (Fig.  A.23). That is, �nd the pla
e to 
ut a large graph intotwo parts. This has been applied to �nding Web 
ommunities.Finding the way to 
onne
t points in a graph. Spanning trees are trees whi
h 
onne
t a set of points.A \minimum spanning tree" is the shortest possible spanning tree (Fig.  A.24).Path�nder networks (9.1.3).A more 
omplex problem is to �nd optimal paths through set of points. Traveling salesman problem.

 A.3.4. Very Large Graphs: From Graphs to NetworksIn
reasingly, very large s
ale graphs are being evaluated. Thousands of nodes. A network is a graphin whi
h we 
onsider movement of entities between nodes. Networks may be 
hara
terized by somebasi
 properties [8]. One of the most important properties is the distribution of the probabilities of
onne
tions between nodes. The simplest has random 
onne
tion of network nodes. However, somenetworks have 
lusters of 
onne
ted nodes. These are Small-world networks [38] (Fig.  A.25).
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Figure  A.23: A large graph may be broken up into small graphs. The partition breaks only one link and leaves
roughly equal sub-graphs.
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Figure  A.24: A spanning tree connects a set of points (left). A minimum spanning tree (right) is the shortest possible
tree that connects all the points.
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Figure  A.25: Graphs differ in the number of short range connections. The graph on the left has random connections.
The graph on the right has a preference for connections to some nodes this is typical of many applications such as
the Web.S
ale-free stru
ture of network 
onne
tivity. Relationship to Zipf's Law.

Graph ComplexityThe management of 
omplexity has been a re
urrent theme in this text. System 
omplexity (3.8.3).Visual 
omplexity.Complexity is a 
hallenge. Complexity metri
s. Entropy ( A.1.0) as a measure of 
omplexity.Graph theory ( A.3.0). In Fig.  A.26, the network on the right is 
learly more 
omplex than the oneon the left. By one 
ommon measure, the 
omplexity is X, Y, Z. Thus, 
omplex 
an be a type ofsoftware 
ode metri
 ((se
:softwaremetri
s)). Complexity of software (number of bran
hes and loops).Kolmogorov. Easier to develop and maintain software with less 
omplexity.
 A.3.5. Social Network AnalysisWe have seen many 
ases of so
ial information. Purely lo
al intera
tion. So
ial networks. Can lead toemergent behavior. Takes a mathemati
al approa
h. Who talks to whom (5.1.0).

Characteristics of Social Networks Another type of problem is to determine how 
lose any one itemis to any other item in a graph (Fig.  A.28). Be
ause of a 
lassi
 so
ial psy
hology experiment donein the 1950's, this is known as the \degree of separation" [50]. In that study, Ameri
ans were testedto see how many a
quaintan
es linked people from di�erent regions. This is a similar to the e�e
t ofthe distan
e between Web pages (2.6.3). This depends on the \lumpiness" of the graph spa
e. Citation
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Figure  A.26: Branching and looping can be used as a measure of the complexity of a graph. Here, the complexity
increases from left to right.

Figure  A.27: Massive center for Web interconnections [?]. (redraw) (check permission)analysis (9.1.2).
PPPPPP

������

dA dB dC dDd
E

Figure  A.28: The degrees of separation count how many steps there are between two points. C is 2 steps from A,
but D is also two steps from A when connected by E.

Characteristics of the Social Network Someone at node D is better 
onne
ted than a person at node J.Chara
teristi
s of the individual position in the so
ial network and of the so
ial network as a unit(Fig.  A.30). Consider the 
ommuni
ative patterns of people in the hypotheti
al 
ommuni
ations(\kite") network (Fig.  A.29). In the �gure, node \D" has high 
entrality and node E has high between-ness.Additional parameters in roles, ease of 
ow, et
. Correlation 
oeÆ
ient [51].Epidemi
s. Ino
ulation.Indeed, a 
riti
al mass is needed or else, the disease will not be transmitted and will die out.People on the web 
an be disambiguated through so
ial networks. Pruning between-ness graph (9.1.3).Related to PageRank (10.10.2).
Diffusion of Information and Innovation When a new idea or innovation pops up, it gets spread a
rossgroups of people. Di�usion of innovations (Fig.  A.32). This is 
losely related to the so
ial network of
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Figure  A.29: An idealized communications network — called a “kite” — illustrates the different roles group-members
can play in communications. For instance, Person H is essential for I and J to communicate with the rest of the
group. (redraw)

Factor Description

Properties of Individuals
Centrality How central is it among other nodes in the network.
Between-ness Extent to which a node is between two other nodes.

Characteristics of Social Networks
Density (Coherence) What proportion of all possible links are actually present?
Cliques The extent to which subgroups occur.

Figure  A.30: Some measures of social networks.

Figure  A.31: Epidemic modeling. Normal, infected, and resistant agents are shown. (check permission)(redraw)the intera
tion.Patterns of di�usion. Not simple forwarding. Likelihood of retweeting of politi
al messages. Sti
kinessand persisten
e.In some 
ases, the forwarding 
an be
ome a sort of 
ontagion. These are also models for infe
tionand epidemiology in
luding the spread of 
omputer viruses of the spread of human disease. We 
antalk about 
ontagion and disease ve
tors. Moreover, these 
an be blo
ked with a type of in
ul
ation.Conta
ts between 
omputers whi
h spread a virus. Following the notion of an epidemi
, we 
an thinkof a software virus spreading as 
ontagion and we 
ould try to 
ontrol it with ino
ulation. In the 
aseof a 
omputer virus, the ino
ulation might mean applying software pat
hes.Implemented as an agent-based simulation (9.5.1).Improvisation as a dynami
 model of intera
tion. Probability of message being a

epted. Number of
onta
ts about message. Networking and �nding jobs [?℄. Probabilisti
 models. This is too simple amodel as the 
ommuni
ation and individual a
tion and it must be applied with 
aution.
 A.4. More Models
 A.4.1. More Data Models
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Figure  A.32: Idealized curves for diffusion of innovations shows typical curves [?]. (create agent-based simulation).
(redraw)

The Relational Data Model: Using Relational Tables to Organize and Merge AttributesThe Relational Model organizes sets of related attributes into tables. Fig.  A.33 shows tables withexamples of the entity 
lasses in Fig. 3.55. This use of tables is eÆ
ient be
ause it keeps relatedattributes together. The attributes 
an be joining entries a
ross tables as needed. Splitting attributesa
ross several tables fa
ilitates eÆ
ient storage by minimizing redundan
y.To respond to queries, the attributes often have to be re-
ombined from di�erent tables. A \key" isan attribute of two or more entities or entity 
lasses that forms a link between entities. In Fig.  A.33,StudioName is a 
ommonality between the two tables; it is an attribute for both entities. Thus,StudioName is a \key," and links the entities STUDIO and VIDEO, and 
onsequently the tablesVIDEO and STUDIO. The key guarantees there will be no ambiguity about whi
h rows of the tablesto link. The tables are usually optimized with a pro
esses known as normalization. Moving fromdes
riptions of entity 
lasses to spe
i�
 instan
es. Attribute value pair: Title="North-by-Northwest"
VIDEO Title Director Year StudioName

North-by-Northwest A. Hitchcock 1959 MGM
Toy Story J. Lasseter 1995 Disney
Crouching-Tiger A. Lee 2002 Columbia

STUDIO StudioName Phone Email

MGM 800-555-1458 orders@mgm.com
Disney 800-555-9783 orders@disney.com
Columbia 800-555-9783 orders@sony.com

Figure  A.33: Relational tables and sample values for the VIDEO and STUDIO entities.

Richer Data Models

RDF Data Model Linked data. Often looser stru
ture than formal data models. This 
an be usefulwhen there are in
onsistent systems of metadata.
Temporal Data Models

Modeling Stream Data

 A.4.2. ModelsSystem Identi�
ation.
 A.5. AlgorithmsAlgorithms des
ribe pro
edures for a

omplishing spe
i�
 tasks. Algorithmi
 thinking should be fun-damental for edu
ation. Algorithms and data stru
tures (3.7.1).
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 A.5.1. Types of Algorithms\Algorithms" are pro
edures for solving problems. Algorithms often need to be 
oupled with appropri-ate data stru
tures ((se
:datastru
tures)). Algorithms have been developed for many of the te
hniquesdes
ribed in this book. Here we turn to the examination of those abstra
tions. We brie
y dis
ussedmany algorithms in the early 
hapters, and in the more detailed dis
ussions of this 
hapter we havealready 
onsidered graph-based algorithms ( A.3.2). Fig.  A.34 shows a table of where some algorithmfamilies are dis
ussed.
Algorithm Family Section

Dynamic programming (sec:dynamicprogramming)
Encryption  A.13.0

Graph algorithms  A.3.2

Compression algorithms  A.2.0

Machine Learning  A.11.0

Parsing  A.5.4

Text and Web Processing (sec:moretextretrieval)

Figure  A.34: Guide to the discussions of some major algorithm families.There may be several algorithms for 
ompleting any given problem, and they may possess di�erentdegrees of eÆ
ien
y in terms of 
omputational 
ost, memory, or time. Sin
e most interesting problemsare 
omplex, it is generally useful to �nd algorithms that are eÆ
ient even when the number of termsgets large. The extra e�ort required to do addition may in
rease linearly as the number of terms grows.Global algorithms take all the data as a unit. These are often the more e�e
tive, but they 
an bevery expensive 
omputationally. Other algorithms su
h as neural networks are \lo
al". That is, the
al
ulations are obtained in steps. A similar dimension is whether the solution is found all at on
e orwhether it is found in iterative steps.
 A.5.2. Data Structures
 A.5.3. Computational ComplexityFor large problems, the 
omplexity 
an make a big di�eren
e in whether a adequate solution 
an beobtained in the available time. Indeed, we measure the 
omplexity of algorithms in terms of the amountof time they take to 
omplete. Some problems, su
h as adding a 
onstant to all the members of listare linear. Other problems, su
h as �nding the sum of all pairs of numbers in a list are n2. The most
hallenging problems are said to be \NP hard"; their diÆ
ulty grows as a polynomial fun
tion of theirsize. Combinatori
 explosion.

Figure  A.35: Comparing algorithm completion time.

 A.5.4. Parsing GrammarsStru
tured obje
ts. Here we explore additional details of the algorithms des
ribed earlier (10.4.2, 10.4.2) aswell as some other parsing algorithms.
State-Machine ParsingAs noted earlier, natural language 
an be approximated by a state ma
hine. Extended state ma
hines

(3.10.1) 
an be used for parsing. This works parti
ularly well for formal and simple languages. Spe
i�-
ally, they need to expanded with re
ursion and otherwise augmented as ATNs.



 A.5. Algorithms 523Fig.  A.37 shows a fragment of a phrase-stru
ture grammar, while Fig.  A.38 shows a very simplelexi
on. Spe
i�
ally, it shows rewrite rules for the senten
e \The dog bit the boy". Fig.  A.39 showsthe parse tree for this senten
e. Colle
tions of tree-stru
tured data | in most 
ases parse trees | are
alled a treebank (e.g., [15]).
Rewrite Rules Description

LHS RHS

S NP + VP Sentences (S) are composed of Noun Phrases (NP) and Verb Phrases (VP)

NP N, D + N Noun Phrases (NP) can be composed of a Noun (N) or a Determiner (D) (i.e., ‘the’) and
a Noun (N)

VP V, V + NP Verb Phrases (VP) can be composed of a Verb (V) or a Verb and a Verb Phrase (VP)

Figure  A.36: Fragment of a phrase-structure grammar. LHS= Left hand side. RHS=right-hand side.

Figure  A.37: State machine notation showing that one or more adjectives can be repeated before a noun.

Node LexiconNoun dog, boyDeterminer theVerb bit
Figure  A.38: Lexicon for simple phrase-structure grammar example.

Figure  A.39: Parse tree for “the dog bit the boy”. (redraw) (check permissions)\Garden path" senten
es. These may require ba
ktra
king (3.7.1,  A.7.2).
Other Parsing MethodsMany additional algorithms have been developed.Chart parsing. Re
ursive des
ent parsers. It helps to keep many versions of a parse a
tive.

 A.5.5. Hidden Markov ModelsCould we formalize the insight we had in Fig. 10.12? Sequential models. Hidden Markov Modelsprovide a statisti
al te
hnique for modeling sequen
es. They are weighted automata (10.4.2). Indeed,HMMs may be thought of as a statisti
al version of grammars. Re
all that we used Hidden Markov
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Type Term

S NP+VP

NP N, ART+N

VP V+NP

Type Term

N rain, umbrella

ART the

V hit

Figure  A.40: Simple re-write rules (left) and lexicon (right) for the example grammar.

Step Description

1. If the current state can be re-written, use-rewrite rules and increment level.

2. If state cannot be re-written (at terminal node), check active word against type
of the terminal node (active) word.

3. If that matches, take new terminal word and pop up level and check to see that
all tests have been performed there.

3a If that matches, take new active word and pop up level and check to see that
all tests have been performed there.

3b If there is no match and the state cannot be re-written, back up to previous
alternative branches until finding one where a match is possible.

4. If all the active words have been matched, then the parse succeeds.

Figure  A.41: Simple transition-network parsing algorithm.

Step Active Word Action/Comments

1 The Start, expand S to (NP[1]+VP[1])

2 The try NP[1] as (N[2]), no match, try next alternative for NP[1]

3 The try NP[1] as (ART[2]+N[2]), match ART[2], next word, try NP[2]

4 rain try N[2], match, next word, pop up to level 1

5 hit try VP[1] as (V[2]+NP[2]), match V[2], next word, check NP[2]

6 the try N[3], no match, try next alternative for NP[2]

7 the try NP[2] as (ART[3]+N[3]), match ART[3], next word

8 umbrella try NP[3], match, no more words, pop up to level 0

9 Done Valid parse!

Figure  A.42: Parse of the sentence “The rain hit the umbrella”.

The bear hug created a stir

Figure  A.43: Parse for “The bear hug created a stir”. Note that a parser first tries to treat bear as a noun but then
has to backtrack and treat it as an adjective.Models 
an des
ribe sequen
es su
h as the phonemes that represent a spoken word. We have seen manyappli
ations of HMMs. HMMs are a type of supervised learning algorithm ( A.11.3) in the sense that thetraining determines the values of parameters. We have seen appli
ations for parts of spee
h 6.2.2, 10.4.1and spee
h itself 11.3.3.

Selecting an HMM Architecture and Fitting Training Data to that ArchitectureThe �rst step is to sele
t an HMM ar
hite
ture by de
iding what 
onstraints 
an be pla
ed on theHMM. For instan
e, for spee
h the models are fed forward. A typi
al HMM ar
hite
ture is shown inFig.  A.44.The weights for HMMs are usually generated by a supervised learning pro
edure. Large 
orpora fortraining examples. Trying to �t the data into the model. We must have a tagged training 
orpus. Theforward-ba
kward algorithm or the more general, Entropy Minimization (EM) algorithm,1 is used fortraining an HMM ( A.1.1) (Fig.  A.45). These 
ombinations may make re
ognition. These are based
1This is also known as the Baum-Welch Algorithm
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Figure  A.44: Repeat of the HMM example which we saw earlier.on dynami
 programming. but they are probabilisti
. The 
ontinuous stream of spee
h is diÆ
ult tosegment into phonemes.
Figure  A.45: Forward-backward algorithm for training HMMs.

Matching Sequences to the HMMsSeveral HMMs may be developed; then spee
h samples 
an be mat
hed to them. This is a kind ofmodel-based re
ognition with HMM as the model. Spe
i�
ally, the Viterbi algorithm uses a type ofdynami
 programming ((se
:dynami
programming)) to determine the t-mat
hing sequen
e (Fig.  A.46).Sour
e-
hannel model. Information theory ( A.1.0).
Figure  A.46: Viterbi algorithm for matching HMMs.HMMs are based on Markov models whi
h, generally 
onsider just one previous time step. AlthoughHMMs have proven very su

essful, more than one time step may need to be 
onsidered.Segment and deal with segments without 
onsideration of the 
ontent of those segments. This allowssequential information to be 
onsidered. While we might want to use phrases, it may be better tosimply use groups of words with a �xed lengths.

 A.5.6. Configuration Rules
 A.5.7. Optimization and Constraint ProcessingSeveral types of problems. 0Z0l0Z0ZZ0Z0Z0l00ZqZ0Z0ZZ0Z0Z0Zq0l0Z0Z0ZZ0Z0l0Z0qZ0Z0Z0ZZ0Z0ZqZ0

Figure  A.47: The 8-queens problem demonstrates the value of algorithms to solve problems that are very difficult
to solver by trial-and-error. The queens need to be lined up so that no two are on the same vertical, horizontal or
diagonal row.
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 A.5.8. Version Tracking and Version ManagementKeeping tra
k of 
hanges to a do
ument. Fig.  A.49. Dynami
 data. Files with periodi
 updates.Dete
ting di�eren
es in versions. Merge and split. Move. Keeping tra
k of version history.

Figure  A.48: Versioning. (under construction) (redraw)
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Figure  A.49: Keeping track of versions.Version management for software.
 A.6. Additional Search Engine Procedures and Algorithms
 A.6.1. NormalizationPrepro
essing Text. Inverted indexing. Words (6.2.1). Tokenization, stemming, and normalization.Normalization.
 A.6.2. Inverted Indexes
 A.6.3. Calculating Term Weights in the Vector Space ModelAs des
ribed earlier (10.9.2) a text may be represented as a \bag of words" in whi
h the order of thewords is not taken into 
onsideration. Compositionality (1.1.3). Fig.  A.50 shows a term-by-do
umentmatrix for a hypotheti
al do
ument 
olle
tion dealing where ea
h term is just three items.Here, we use a very simple tf and idf as de�ned ba
k in (10.9.2). The 
al
ulated values are shown inFig.  A.51.

Similarity and Query MatchingSimilarity of do
uments from word overlaps [75]. There are several ways to measure similarity between
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Document Query
Term D1 D2 D3 D4 D5 df Q1

1 apple 1 3 2 1 3 5 1
2 banana 4 0 3 0 1 3 1
3 computer 1 4 0 2 5 4 0

Figure  A.50: A simplified term-by-document matrix for a hypothetical collection. The number of occurrences of ten
terms is shown for six documents. The total number of terms in the document is shown on the bottom line.

Document

Term D1 D2 D3 D4 D5

1 apple 1.0 3.0 2.0 1.0 3.0

2 banana 6.7 0.0 5.0 0.0 1.7

3 computer 1.3 5.0 0.0 2.5 6.3

Figure  A.51: tf ∗ idf weighting of the documents from Fig.  A.50.two do
uments or between a do
ument and a query. Some of these approa
hes simply 
ount thenumber of overlapping words. Other te
hniques are based on a 
al
ulation of the distan
e between thedo
uments.For multi-word queries, a more formal de�nition of similarity is needed. The \
osine distan
e" betweenthe query and the do
uments is 
al
ulated separately for ea
h do
ument following Eq.  A.42

cosine distance between DocumentD and QueryQ =

n
∑

t=1

((tf ·idf)tD
× (idf)tQ

)

√

√

√

√

n
∑

t=1

(tf ·idf)2tD
×

√

√

√

√

n
∑

t=1

(idf)2tQ

( A.4)The mat
h is Document3 (Fig.  A.52). This is reasonable be
ause it has a pattern of tf ·idf s
ores thatbest mat
hes the query idf . They 
an be improved with more 
omplex tf and df .
Document

D1 D2 D3 D4 D5

0.79 0.36 0.92 0.26 0.46

Figure  A.52: The “cosine distance” between the document tf ·idf values (Fig. ??) and the query idf values.
Document3 matches the query t.

tf =
log2(number of times the term appears in the document + 1)

total number of terms in the document
=

log2(td + 1)

Td

( A.5)

idf = log2

(number of documents in the collection

number of documents with the term

)

+ 1 = log2

( D

Dt

)

+ 1 ( A.6)The basi
 tf ·idf formula in
ludes of the terms in di�erent parts of the do
ument sear
h. However, thereare other fa
tors that 
an also be 
onsidered su
h as query term \prominen
e". Modern sear
h enginesemploy other 
onsiderations su
h as term prominen
e.
2. This is derived from the inner product of the Document vector, D, and the Query vector, Q: cos(θ) = D.Q

|D||Q|
.
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 A.6.4. Dimensionality Reduction: Latent Semantic Indexi ng (LSI)In many problems there are too many features. Dimensionality redu
tion redu
es the number offeatures by 
ombining them. The prin
iple of dimensionality redu
tion has many appli
ations. Oneuseful example of dimensionality redu
tion is the text retrieval pro
edure known as \Latent Semanti
Indexing" (LSI) whi
h applied dimensionality redu
tion to the term-by-do
ument matrix of the Ve
torSpa
e Model (10.9.2). The term \boat" and \ya
ht" are similar enough that they 
ould be 
ombined.In e�e
t, this 
reates a statisti
al thesaurus (2.2.2).Like the Ve
tor Spa
e Model, LSI usually uses the 
osine value for mat
hing. LSI 
an be used forretrieval [24] and for �ltering [29]. As a simple example, in a term-by-do
ument matrix (Fig.  A.53), two
lusters of terms may be seen.
Document

Term D1 D2 D3 D4 D5 D6

boat 1 2 0 0 1 0

boats 3 0 7 0 0 0

sailing 4 1 1 0 1 0

water 2 5 3 0 0 0

car 0 1 0 0 6 2

automobile 0 0 0 4 0 5

highway 1 0 0 1 3 0

tires 0 0 0 4 0 2

Figure  A.53: In this hypothetical example of a term-by-document matrix, two clusters of documents and terms may
be easily identified. One set deals with boats and a second one deals with automobiles. Although the term “boat”
does not appear in Document2, the folding of the terms into the reduced-dimensionality LSI space will allow it to
be associated with that document.This pro
edure should eliminate spurious relationships among the words And fo
us on the most relevantrelationships. As with the Ve
tor Spa
e Model, queries are mat
hed to the do
uments by taking the
osine distan
es between the do
ument terms and the query terms. Be
ause this model produ
esa semanti
 spa
e, some psy
hologi
al models have been based on LSI, su
h as the Latent Semanti
Analysis (LSA) [47] of human semanti
 memory.Latent semanti
 indexing uses a linear-algebra te
hnique whi
h is known as \singular-valued de
omposi-tion" (SVD). This is related to other statisti
al te
hniques su
h as prin
iple 
omponents analysis (PCA)and typi
ally, a high-dimensional spa
e is employed. SVD is also used for eigenfa
es ((se
:eigenfa
es)).

 A.6.5. PageRank AlgorithmThe links from one Web page to another provide eviden
e about similarity of the 
ontents of thosepages. Several algorithms have been proposed to demonstrate this (e.g. [?, ?℄). However, PageRankfo
uses only on \authorities".Here we will 
onsider the details of an algorithm for 
al
ulating this. Re
all that in Fig. 10.51, we ratedpages A and C highly if many other pages point to them. Moreover, if A and C are rated more highly,then B will also be rated highly.The PageRank algorithm adjusts the rating of pages (nodes) based on the rating of their neighborswith a type of spreading a
tivation ( A.10.3). This is 
al
ulated as shown in Eq.  A.7[54]. The Rank of ado
ument, R(Di), is related to the Rank of all thedo
uments that are 
onne
ted to it, C(Nj), where d is a damping fa
tor between 0 and 1. Spe
i�
ally,the PageRank of P0 is R(P0):
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R(P0) = (1 − d) + d(
R(P1)

LP1

) + ... + d(
R(Pn)

LPn

) ( A.7)Where:
P0: The target page
P1,...,Pn are pages linked to P0

L: outward links from P0

d: Dampening fa
torWe 
an see how this operates for the very simple network in Fig.  A.54 using the values in Fig.  A.55.The overall e�e
t is that a
tivation 
ows from weakly 
onne
ted nodes to more highly 
onne
ted ones.
Figure  A.54: PageRank calculated for a small network. (use example from MRS)

Node Initial Ending
Value Value

A 0.4 x
B 3.1 x
C 1.1 x
D 3.3 x

Figure  A.55: PageRank calculations. As would be expected, the activation in the small network accumulates on
node A.

 A.7. LogicIf we know that \All People Are Mortal" and we know that \Pat is a Person" then it is logi
al that\Pat is Mortal". Logi
 is a formal method that supports qualitative reasoning and inferen
e. Logi
is used to determine the \truth value" of statements given 
ertain assumptions and inferen
e rules.Like math, logi
 uses a formal notation and rules. Logi
 assumes a quantitative (often 
ategori
al)pro
essing. Formal logi
 use ontologies for knowledge representation (2.2.2).Fig. ?? lists some 
ommonly-used logi
al symbols.Types of logi
: Des
ription logi
. We have seen several examples Knowledge representation. Deonti
logi
.Logi
 is most appli
able to dis
rete 
ategories.As we will see in ( A.8.1), probability 
an be used for quantitative inferen
e. Logi
 versus argumentation
(6.3.5).
 A.7.1. Symbolic LogicThere are two fundamental types of inferen
e: Dedu
tion and indu
tion. We are generally 
on
ernedwith dedu
tive inferen
e. This type of logi
 was originally studied by Aristotle so it is 
alled \Aris-totelian logi
". Propositional 
al
ulus in
ludes dedu
tive statements su
h as, \If X is true then Y istrue".

Categorical SyllogismsSyllogism is a parti
ular illustration of dedu
tion. For instan
e, we might attempt to determine thetruth of the inferen
es of a syllogism (Fig.  A.56). Rules of propositional inferen
e.
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Statement Type Example

Claim if students work hard then they are happy
Assertion all the students in the school work hard
Inference therefore all the students are happy

Claim
Assertion
Inference

Figure  A.56: The first inference is valid (on the assumption that the premises are true) but the second is not.

Truth FunctionsWe introdu
ed Booleans (3.9.2). E�e
tively, these are propositions su
h as \do
ument has term X". We
an view Booleans truth tables using the more formalized notation. The XOR relationship is moresubtle. The output is TRUE if one or the other input is TRUE, but the output is FALSE if both inputsare TRUE or if both inputs are FALSE. The output is TRUE only if there is dis
repan
y between theinputs, otherwise the output is FALSE.
XOR

Input 1 Input 2 Output

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSEBoolean expressions 
an be strung together as in the �rst line of Fig.  A.57. Sometimes, it helps tosimplify these expressions into a \normal form". The Conjun
tive Normal Form (CNF) .... While theDisjun
tive Normal Form (DNF)...
(Chicken AND Dessert) OR (Beef AND Dessert) OR (Chicken AND Coffee) OR (Beef AND Coffee)
(Chicken OR Beef) AND (Desert OR Coffee)

Figure  A.57: The expression on these two lines state the same relationship but the second, which is in Conjunctive
Normal Form, is more concise.Sometimes, it is most e�e
tive to use a tree to show 
omplex 
ombinations of Boolean relationships.The de
ision trees we 
onsidered earlier were binary OR-trees. They had only OR relationships, butit is also possible to have AND relationships in trees (usually these are indi
ated with a bar a
ross the
hoi
es. Fig.  A.58 shows an AND-OR Tree for the CNF example in the previous table.
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Figure  A.58: And-Or trees. The cross-link indicates an AND relationship. (redraw).

Reasoning with Hierarchical RelationshipsInheritan
e as a model for reasoning (2.1.4).Problems of multiple inheritan
e.
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Predicate CalculusPredi
ates des
ribe the 
ontent of propositions. For instan
e, in the statement a > b the > is thepredi
ate. Thus, predi
ate logi
 involves making inferen
es about statements that in
lude attributes.
Statement Description Example

p → q If p then q Apples have seeds.
p assertion There is an apple.
q the conclusion It has seeds.

Figure  A.59: Inference rules.This often in
ludes the quanti�ers \all" and \some". Fig. ?? shows some of the notation. Fig.  A.60gives an example. If M is a predi
ate \to be a man," then Mx would be interpreted as x is a man.
all students in the school work hard
∀x(Zx → W )

Figure  A.60: An example of a predicate calculus expression.Earlier, we introdu
ed ontologies (2.2.2). In the more rigorous sense, ontologies provide the lexi
on ofthe predi
ate 
al
ulus.Assertion links.Frames as a generalization of hierar
hies.
FramesFrames are a way of representing entity 
lasses. However, unlike Entity Classes from the ER model,they usually apply to general world knowledge. Still, the frame-slots are a lot like attributes. Fig.  A.62

Figure  A.61: Frames. (redraw)
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Figure  A.62: Frames. (under construction)Thus far, we des
ribed logi
 based on inferen
es involving evaluating the validity of statements aboutspe
i�
 instan
es. This is \�rst-order predi
ate 
al
ulus". Se
ond-order predi
ate 
al
ulus examinesthe validity of statements about relationships. Representing fa
ts.



532 Copyright R.B. Allen, 2000-2013 – DRAFT - no use after 7/13

 A.7.2. Complex Logical InferenceImpli
ations su
h as double negative elimination.Inferen
es 
reate new propositions. Given a set of statements, we 
an try to \
hain" them together todraw inferen
es. The obje
tive is generally to �nd a path from the initial state to the �nal goal. We
ould start with the premises and build inferen
es toward a goal (forward 
haining).Or, we 
ould start with the goal and attempt to reason ba
kward (ba
kward 
haining). Forward
haining expands all propositions in order to �nd all possible impli
ations. Ba
kward 
haining identi�esthe goals and then progressively de
omposes those goals into sub-goals Fig. 3.40. This pro
ess is similarto \means-ends analysis" (3.7.1). These 
an also be viewed as examples of bottom-up pro
essing andtop-down pro
essing (10.1.5).

Figure  A.63: Backward chaining. (check permission)

 A.7.3. Knowledge Representation and Logic Programming La nguagesKnowledge representation (2.0.0). Formal languages for knowledge representation and logi
al inferen
e.
Declarative Logic Programming LanguagesSeveral logi
 programming languages have been developed. Fig.  A.64 shows some examples of Prologstatements about kinship. Given these de�nitions and assertions, we 
ould answer questions su
h as\Is there a 
hild whose parent is Eve?"

Statement Explanation

woman(eve) Declare there is a woman named Eve.
man(adam) Declare there is a man named Adam.
child(abel) Declare there is a child named Abel.
mother(M,C):-woman(M), parent(M,C) Define that a mother is a woman who is a parent.
father(F,C):-man(F), parent(F,C) Define that a father is a man who is a parent.
mother(eve, abel) Declare that Eve is the Mother of Abel.
father(adam, abel) Declare that Adam is the Father of Abel.

Figure  A.64: Prolog is a computer programming language design to perform logic operations.

Procedural Models: Production SystemsApproa
hes su
h as Prolog are \de
larative" These may be distinguished from \pro
edural" models(Fig. ??). De
larative spe
i�es rules: this in
ludes logi
. Pro
edural is a spe
i�
ation for what is legalsu
h as produ
tion systems.



 A.7. Logic 533Produ
tion systems are based on Condition-A
tion pairs. That is, if 
ertain 
onditions are met, thenthe produ
tion \�res" and the a
tion is exe
uted. Produ
tions may also be thought of as sets ofIF-THEN statements. SOAR [46] is another produ
tion system language ((se
:produ
tionsystem)) thatallows de
omposition of goals and sele
tion of rules. Fig.  A.65 tra
es the steps of a SOAR program asit is exe
uting. Potentially, the priority of SOAR rules 
an be \learned" by storing those produ
tionsfor later use that were most e�e
tive. SOAR allows ma
hine learning ( A.11.0). by 
hunking (4.3.5).
0: ==>G: G1
1: P: P1 (farmer)
2: S: S1
3: ==>G: G3 (operator tie)
4: P: P2 (selection)
5: S: S2
6: O: O8 (evaluate-object O1 (move-alone))
7: ==>G: G4 (operator no-change)
8: P: P1 (farmer)
9: S: S3
10: O: C2 (move-alone)

Figure  A.65: SOAR Problem Space Computational Model trace[46]. There are Goals(G), Proposition(P), States(S),
and Objects(O). (check permission)

Expert SystemsExpert systems use inferen
e and reasoning for pra
ti
al appli
ations. These are often `rule-based,that is they are based on logi
al inferen
e. For instan
e, they may su
h as produ
tion systems toinferen
e. Unfortunately, expert systems tend to be \brittle". That is, they may work well for thesituation for whi
h they were developed, but do not generalize well to new situations. These 
an alsobe de
ision support systems (3.4.2) de
ision support systems but there is a danger of inappropriateinferen
e. Furthermore, they may ex
eed the appli
ation domain of the system. For instan
e, the Aegisatta
k (Fig.  A.66).Te
hnology failures ((se
:te
hfailures)).
Figure  A.66: Aegis.Fuzzy logi
 and probability of belonging to a set (Fig.  A.67).

�
�
�
��

Figure  A.67: Normal local (left) and fuzzy logic (right).

 A.7.4. Representation and Reasoning with BeliefsEarlier, we dis
ussed beliefs as an aspe
t of so
ial psy
hology (4.5.0). In one of the senses of formaldes
ription of beliefs.In a model with several agents, those agents may have models the world, of ea
h other, and other agentsviews of the world. (Fig.  A.68). A person may believe something that is not true. Or, it may simplybe impossible to verify. If I believe the world is 
at...I believe in dragons....Belief is di�erent from 
on�den
e.
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 and beliefs [28]. Reasoning about un
ertainty [36].John knows his name. John believes that today is Tuesday.Belief vs. belief systems.
Figure  A.68: Beliefs.Con�den
e in results.

 A.8. Probabilities and Probabilistic InferenceAlternatives to logi
al inferen
e whi
h was dis
ussed in the previous se
tion. Toward plausible reason-ing. Indu
tion. Un
ertain results. Sampling. Hypothesis testing.
 A.8.1. Basic ProbabilitiesWhile logi
al inferen
e is based on symboli
 inferen
e; it is also possible to make a probabilisti
 in-feren
es. Let us brie
y review probability. Eq.  A.9 shows the produ
t of two probabilities. Thisessentially an AND operation. For instan
e, this probability of getting a 2♣ AND 3♠ in one draw is1/13 + 1/13. Eq.  A.9 shows the sum of probabilities. This is essentially an AND. For instan
e, theprobability of getting a K♣ AND Q♣ in su

essive draws is 1/13 * 1/13 (assuming you the 
ards arerepla
ed after ea
h draw). Note that the symbol ∩ is the same as and.

P (A and B) = P (A ∩ B) == P (A) ∗ P (B) ( A.8)

P (A or B) = P (A) + P (B) ( A.9)We 
an also de�ne 
onditional probability whi
h is, for instan
e, the 
han
e of \Event A given EventB" that 
an be written as P (A|B).
P (A|B) =

probability of both Event A and Event B

probability of Event B
=

P (A ∩ B)

P (B)
( A.10)

 A.8.2. Bayesian PredictionLearning 
onditional probabilities. This is a 
ommon te
hnique for ma
hine learning ( A.11.0). It 
analso be seen as a type of knowledge representation.
Bayes RuleIf we have expe
tations about how attributes predi
t membership in a 
ategory we may also be able todetermine that likelihood that obje
ts in the 
ategory will show possess those attributes. Spe
ially, ifwe know P(A|B), P(A), and P(B), we 
an determine P(B|A). This is known as Bayes Rule and itis the basis of learning about the features relevant for doing 
ategorization.

P (A|B) =
P (A ∩ B)

P (B)
( A.11)

P (B|A) =
P (A ∩ B)

P (A)
( A.12)

P (A ∩ B) = P (A|B)P (A) = P (B|A)P (B) ( A.13)Suppose there is a 0.5 probability do
uments with the word \training" in them also have the word\edu
ation" and the probability of the word \edu
ation" o

urring in the do
uments is 0.8. If we know
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ation" is in a do
ument, what is the 
han
e that the word \training" is in that samedo
ument? Eq.  A.14:
P (“training”|”education′′) =

P (“training′′ ∩ “education′′)

P (“education′′)
=

0.5

0.8
= 0.625 ( A.14)

Bayesian ClassificationBayes Rule 
an also be applied to 
ategorization. Thus, if we know the frequen
y of a set of 
ategoriesand we know the frequen
y with whi
h terms o

ur in do
uments belonging to those 
ategories, thenwe determine the probability of a new do
ument belonging to a 
ategory given the terms it in
ludes.If we know that an obje
t has a 
ertain attribute value, we might ask \what is the probability thatobje
t or event belongs to a given 
ategory?" This 
an be determined with an extension of Bayes Rule(Eq.  A.15). For instan
e, Eq.  A.15 shows the probability of belonging to Category 1 (C1) given thatAttribute 1 (A1) has Value 1 (V1).
P (C1|A1V1) =

P (C1 ∩ A1V1)

P (A1V1)
( A.15)This may be generalized to multi-attribute 
ategories [26] (Eq.  A.16).

P (C|A1V1, A2V2, ..., ANVN ) =
P (C1 ∩ A1V1, A2V2, ..., ANVN )

P (A1V1, A2V2, ..., ANVN )
( A.16)

Bayesian NetworksAttribute-based 
onditional probabilities.Updating 
ausal networks [57].Used in text retrieval Fig.  A.69
Figure  A.69: Bayes Network visualization.Information gain in Bayesian 
al
ulations.

 A.8.3. Case-Based Reasoning (CBR)Case-based reasoning (CBR) attempts to �nd relevant examples to generalize from rather than tryingto develop a 
omprehensive statisti
al model [17]. For instan
e, when modeling the path of hurri
ane,it may be more useful to examine previous similar hurri
anes rather than trying to rely on 
omplexsimulations. The resear
her must still �nd e�e
tive features and representations (Fig.  A.70). Retrieve,re-use, revise, return. Sets of examples may be maintained in 
ase libraries.
Formal Descriptions of CasesSetting, A
tor, Goals, Sequen
e. Case-based reasoning ( A.8.3).
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Characterize problem to be solved

?
Find similar, problems in the corpus and how they were solved.

?
Adapt the procedure for the previous problem, apply, and evaluate results.

?
If successful, add to corpus.

Figure  A.70: Path of case-based reasoning.

 A.9. Formal Models for Decision MakingChoi
e and de
ision making have appeared earlier (3.4.1).Logi
, Inferen
e, Planning, and Learning.The 
ontents of representations are sometimes presented dire
tly to the user. In many other 
ases, theymust be reassembled. Doing things with representations.Algorithms for both re
ognition and generation.The simplest task is making binary YES/NO de
isions. For instan
e, we 
ould dete
t the possibility ofa terror atta
k from a 
umulative set of data.
 A.9.1. Signal ProcessingA signal 
arries information in the information theory sense ( A.1.0). A signal 
an be lost if there is toomu
h noise. As an example, think about trying to listen to radio station when there's stati
. You needto 
on
entrate to dete
t the musi
. The simplest approa
h to determining whether a signal is presentor absent. Fig.  A.71 shows distributions of signal and noise. The signal-to-noise ratio determines theease with whi
h the signal 
an be dete
ted. Consider trying to hear a telephone ring in another roomof your house. It is mu
h easier to dete
t the telephone when there is not any ba
kground noise su
has the radio playing or the shower running.

Figure  A.71: Distribution with overlap and a decision threshold. If the threshold is moved to the left, more signal
events can be detected but more errors are also made. However, it the threshold is moved to the right, fewer errors
are made but more signals are missed. (to be rendered)

 A.9.2. Signal DetectionDete
tion is simply a de
ision whether a signal is present or absent. If the signal and noise are similar,it may be diÆ
ult to tell them apart. Su

ess in monitoring the o

urren
e of events (signals).A measure of the su

ess of dete
ting signal is developed as follows. Fig.  A.71 also shows signal andnoise distributions. Also shown is a 
ut-point, whi
h is the threshold at whi
h an observer would de
idethe signal (i.e., the telephone ring) was present or absent. There are four possible 
ombinations of signaland user responses (Fig.  A.72). The 
ut-point is normally sele
ted to minimize the number of errors,but other strategies for pla
ing the 
ut-point 
ould also be 
onsidered.
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Actual Signal
Present Absent

Yes Hit False Alarm
Observer’s (False Positive)
Judgment No Miss Correct Rejection
about Signal (False Negative)

Figure  A.72: 2x2 table for signal detection. The observations might not be accurate since they might be due to
noise, as suggested by Fig.  A.71.This is a type of 
lassi�
ation problem.It is harder to understand somebody when they are talking in a noisy environment than in a quiet pla
e.The level of the signal 
ompared to the amount of noise is known as the \signal-to-noise ratio". Twofa
tors determine the signal-to-noise ratio: The di�eren
e between signal and noise and the observer.This statisti
 is known as d'.{ d' { |- d' |-
Figure  A.73: Sometimes the noise is similar to the signal (left) and sometimes it is clearly different (right). When it is
similar, it takes a very sensitive detection device to accurately separate the noise from the signal. (label distributions)We should keep the ratio of False Positives and False Negatives 
onstant. We 
an do 
hara
terizeobservers as to whether they have a bias toward false positives or false negatives. Compare the twodistributions and determine how good is an observer at telling the di�eren
e. Response operator
hara
teristi
 (ROC) 
urves (Fig.  A.74).
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Figure  A.74: The Response-Operator-Characteristic (ROC) diagram shows how an observer responds given
varying probabilities of Yes and No responses and the signal is varied. The diagonal represents chance performance.
As shown in the ROC diagram on the left, the further the ROC curve is from the diagonal, the better the discrimination.
The diagram on the right shows an analysis of whether the operator has a bias toward responding “present” a bias
toward responding “absent”.E-measure for information retrieval.Generally an issue for re
ognition pro
esses. Signal dete
tion is 
losely related to 
ategorization. Itdetermines whether an obje
t belongs to a given group or not [35]. The properties of signal dete
tion.

Recognizing Category MembershipAs we have seen, 
ategories are widely used in information systems (3.9.1, 4.3.0). We brie
y dis
ussed
hoi
e strategies earlier (3.4.1).
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Decision Networks

 A.9.3. More Game TheoryA well-known 
olle
tive a
tion game is the Prisoner's Dilemma, whi
h is illustrated by the values inFig.  A.75. Imagine two prisoners A and B, who were partners in the same 
rime but who are beinginterrogated separately by the poli
e. If they both 
onfess, they may get a moderate punishment (-3),but if one prisoner 
onfesses while the other does not the one who 
onfesses will get a light punishment(-1), and the one who does not will get a heavy punishment (-5). However if neither talks, there is nodire
t eviden
e and they might both go free (+5).
Prisoner A

A does not talk A talks

Prisoner B B does not talk 5/5 -1/-5
B talks -5/-1 -3/-3

Figure  A.75: In the “prisoner’s dilemma,” the payoffs for each prisoner depend on the behavior of the other prisoner.
The cells of the table shows payoffs to each of the two prisoners.Game theory 
an also be used to explain long-term intera
tion[65]. During the Cold War, the theory ofMutually Assured Destru
tion (MAD) developed based on game theory. the 
laim was that the onlystable equilibrium was the point at whi
h ea
h side 
ould destroy the other. Colle
tive a
tion gamesseek to analyze the de
isions made by individuals when the out
omes of those de
isions are a�e
ted bythe de
isions of other individuals. In many 
ases, one person or the other will have a 
lear advantage.However, the players and will tend to stabilize at an equilibrium point that has advantages for bothplayers. The Nash equilibrium is the solution for whi
h the players would not 
hange their strategieseven knowing the 
hoi
e of the opponent.

Country A
No Bomb Use Bomb

Country B No Bomb 0,0 -1000,10
Use Bomb 10,-1000 −∞,−∞

Figure  A.76: Game theory table for Mutually Assured Destruction (MAD). (revise)Strategies in risky situations. The most dire
tly appli
able 
ompetitive strategy for making de
isionsinvolving other individuals and/or imperfe
t information is one that pi
ks out
omes that maximize thebene�ts and minimize the risks. This is known as a \min-max" strategy. A person who has to make a
hoi
e among a number of approa
hes may analyze the 
han
es of favorable and unfavorable out
omes.This is reasonable sin
e it assumes that the opponent will also attempt to maximize his/her bene�t.Max-min as a fairness strategy.
Payoff

A B C D

Possible Gain +3 +5 +6 +6
Outcomes Loss -4 -4 -5 -6

Figure  A.77: According to a min-max strategy, the options with the minimum loss are selected and from those, the
options with the maximum gain are selected. Thus, option B would be selected. This has the minimum loss for that
gain and the highest possible gain. However using a max-min strategy, C would be selected. This has the minimum
possible loss and the maximum possible gain.
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 A.9.4. Subjective Multi-Attribute UtilityPeople may have their own utility for di�erent attributes and we should in
lude these subje
tive utilitiesin our models the 
hoi
es those people will make. Getting reliable values of subje
tive utility is noteasy [27]. This is an example of \s
aling" (e.g., [?℄).
value of objecti =

j=N
∑

j=0

(attributeV alueij ∗ utilityj) ( A.17)We would like to estimate utility when multiple attributes are involved. If we know preferen
es, we
an work ba
kward and estimate the utility. Multi-attribute de
ision theory is a mathemati
al meansof analyzing de
isions in whi
h there are several 
ompeting variables to 
onsider. In multi-attributede
ision theory (or multi-attribute utility), ea
h variable is assigned a parti
ular utility value a

ordingto its importan
e and they are all plugged into a mathemati
al formula to determine what 
ombinationof variables produ
es the most desirable out
ome. For instan
e, a person might 
hose between twomodels of 
ars based on their attributes (see Fig.  A.78).
Type of Car

Dimension Compact Sports Car Sedan

Price 3 1 2

Fun 1 3 1

Safety 2 1 3

Figure  A.78: Several attributes of cars could be assigned values based on their favorability. A score of “1” is low
on that dimension and a score of “3” is high.

Type of Buyer

Dimension Yuppie Family

Price 1 2

Fun 3 1

Safety 2 3

Figure  A.79: Subjective utilities for two types of buyers. Higher numbers mean that the dimension is more important
for that type of buyer.

Yuppie Family

Dimension Compact Sports Car Sedan Compact Sports Car Sedan

Price 1*3 1*1 2*1 3*2 1*2 2*2

Fun 1*3 3*3 1*3 1*1 3*1 1*1

Safety 2*2 1*2 3*2 2*3 1*3 3*3

Overall preference 10 12 11 13 8 14

Figure  A.80: The Yuppie buyer will prefer the sports car while the Family buyer will prefer the sedan.

 A.9.5. Voting Systems and ElectionsVoting involves the allo
ation of units de
ision units a
ross 
andidates and rules for 
ombining thoseunits (8.4.3). A voting system needs to a

urately re
e
t the voters' preferen
e. Perhaps surprisingly,that does not always happen with simple majority rules ting. Fig.  A.81 shows one example of a
ompli
ations introdu
ed in three-way ra
e. To solve this problem, a variety of voting 
riteria havebeen developed (Fig.  A.82). These may allow multiple votes per individual and preferen
e rankings ofseveral 
andidates [62]. End-2-End (E2E) ele
troni
 voting se
urity. Open sour
e voting software.
ElectionsSystem of voting and related pro
edures for determining government oÆ
ials. Non-partisan supervisionof ele
tions.
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Strength of Preferences
Candidate V oter1 V oter2 V oter3 Mean

A 0.40 0.05 0.35 0.27
B 0.35 0.30 0.30 0.32
C 0.15 0.45 0.25 0.28

Figure  A.81: Majority rule may not result in the most preferred (on average) candidate being elected. If each voter
is allowed to cast only one vote, Candidate A would be elected as the top choice of the majority of the voters.
However if voters cast votes in proportion to their preferences, Candidate B would win.

Type Description or Example

Majority One vote per voter. Winner needs more than 50%
Plurality One vote per voter. Winner is the candidate with the highest number of votes.
Borda Voters rank order the alternatives. Candidate with the highest average rank wins.
Approval Cast one votes for each candidate the voter would accept. The winner is the candidates

with the highest number of votes.
Cumulative Each voter has multiple votes. These can be cast all for one candidate, or spread across

candidates. The winner is the candidates with the highest number of votes.
Instant run-off Successive run-offs narrow the field of candidates.

Figure  A.82: Several types of policies and criteria for elections.

 A.10. Mathematical ModelsWe have dis
ussed many types of models and mentioned mathemati
al equations. Dis
rete math versus
ontinuous models versus 
ontinuous models. Relationship between mathemati
al models and s
ienti�
models (9.2.3). Thus, an important distin
tion is between linear and non-linear models. These di�erin the power of the representation (1.1.2). Ma
hine learning, 
lustering and neural networks ( A.11.0).Models in s
ien
e (9.2.2). Deterministi
 versus probabilisti
 models. To an extent, all models 
an bethought of as mathemati
al fun
tions. Levels of models. Ordinal, Interval, For instan
e de
ision treesare qualitative models. These are representations based mathemati
al fun
tions. Free parameters.Over-�tting. Fitting data: Model + error.
 A.10.1. Linear ModelsIf we believe that some simple linear pro
ess a

ounts for an e�e
t, we might attempt to �t the datafor that to determine the parameters. the linear model from the some data. An e�e
tive approa
h isoften to �nd the line that is the least-squares distan
e (Fig.  A.83). Underlying linear model plus errorin measurement.
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Figure  A.83: A straight line is fitted to a data points. A common approach is fitting with “least squares” which finds
the line that minimizes the sum of the square of the distance from the data points.Even simple models 
an provide immense analyti
al help. Fig.  A.84 illustrates how simple algebrai
models 
an be used to determine what is the 
ombination of produ
tion 
apa
ities to produ
e twoseparate produ
ts. The two left panels des
ribe the produ
tion 
apa
ity of two types of 
ars (produ
t1 and produ
t 2). The right panel then uses linear algebra to resolve the 
onstraints posed by fa
torsof produ
tion.
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Figure  A.84: Linear models can specify constraints and simple combinations of these constraints can be calculated.
On the right, the two linear constraints are intersected. If the first line shows the maximum level of X and the second
line shows the maximum level of Y, then the combination of the two shows the “feasible region” BELOW the
intersecting lines. In other words, that area within which parametric tradeoffs are possible.

 A.10.2. Non-Linear and Dynamical ModelsIn some 
ases, the intera
tion between the 
omponents is often very unpredi
table. When two adap-tive systems intera
t, they form a \dynami
al system". These are also 
alled \
o-evolutionary" or\mutually-
ausative" systems. The evolution is determined by the dire
tion the pair of systems take.An example would be a person intera
ting with another person | the a
tions of ea
h a�e
t the other.While some of these systems are 
haoti
, others are stable.Sometimes linear equations are good representations for a pro
ess; sometimes a more 
omplex, non-linear equation works better. We have already seen non-linear models used for mathemati
al simulations
(9.5.4). While linear systems are very powerful, many systems are non-linear. The representations aremathemati
al equations. Linear modeling, whi
h assumes that all e�e
ts 
an be modeled with straightlines, is e�e
tive only to a point. Equations with exponents. These models are the foundations of
omplex systems.
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Figure  A.85: A straight line can be an effective representation to describe a set of points (left). However, the line
is less satisfactory if the points are scattered (center) or if a curved line may be a better representation (right). A
representation that allows curved lines will also be more complex.

Power LawsThese are a family of 
ommon non-linear fun
tions. For instan
e, the long-tail (8.12.5) follows a powerlaw.
y = xz ( A.18)Some typi
al power law 
urves are illustrated in Fig.  A.86

Figure  A.86: Power laws.
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Long-Tail DistributionsPraeto

Figure  A.87: Long tail. (redraw)

Figure  A.88: When we expect data to fit a power law, deviations from the predicted pattern may indicate underlying
problems. Here, a drooping tail in eCommerce data suggests that the may not be enough representation of low-
frequency items. (check permission)

Zipf’s Law Closely related is a simple mathemati
al fun
tion known as Zipf's Law (Eq.  A.19) givesa

urate des
riptions of word frequen
ies. Zipf's Law states that the frequen
y of observations for aword of a given rank number Pr, is equal to a 
onstant, k, divided by the rank, r:
Pr =

k

r
( A.19)Appli
ation of Zipf's Law. Example of word frequen
y. Fig. ??.

1. the
2.
3.

Figure  A.89: Example data for Zipf’s Law.

Fractals and Self-SimilarityChaoti
 systems have no stable solutions. However, some do exhibit a property known as \self-similarity". Self-similarity suggests that there is a repetition of a pattern a
ross several di�erent s
ales.Fig.  A.90 gives two examples of this property. The self-similarity in some of these patterns generates
omplex patterns. There are appli
ations of fra
tals in image generation and 
ompression.Simulation of non-linear and 
omplex systems. Simulated annealing.Set point with a 
omparator.There are systems with the fa
tors are interlo
king. Simple feedba
k with a 
ontroller. Control theory(Fig. ??). Su
h models are too simple. Unlike adaptive models in whi
h the representation itself
hanges.
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Figure  A.90: Self-similarity is illustrated on the left in the Sierpinski triangle in which equilateral triangles are carved
out of larger equilateral triangles[32]. (check permission) On the right is a fragment of the Mandelbrot Set which
shows a more complex self-similarity. Zooming in shows essentially identical patterns that are repeated at the finer
levels of granularity.

Figure  A.91: Energy surface. Finding an energy minimum. Simulated annealing.Sometimes we need several intera
ting equations to model a system, These form \dynami
al systems"Sometimes these equations 
onverge to a solution and a system with feedba
k will maintain homeostasisaround a 
ontrol point. In other feedba
k systems diverge and no solution is possible. Those that
onverge rea
h a single \�xed-point" equilibrium are said to be attra
tors (Fig.  A.92). Sometimes theequations do not 
onverge to a single point but follow a regular pattern a
ross several solution points.In a few 
ases, there is no simple pattern to the solution.
Figure  A.92: Trajectories of an attractor (left) and a strange attractor (right)[32]. (check permission)There are sometimes 
omplex systems. Chaos 
omes from large di�eren
es due to small 
hanges ininitial 
onditions. An example is the \butter
y e�e
t" in whi
h an apparently insigni�
ant event inone part of the system 
an be ampli�ed to have a major impa
t later in the system's evolution.Criti
al phenomena. Emergent phenomena.Pun
tuated equilibrium.Sometimes simulations are used to model these systems but one has to be 
areful about the a

ura
yof the simulation.Hysteresis.

Dynamical SystemsNon-linear systems with feedba
k. These are sometimes 
alled \
o-evolutionary systems". Systemdynami
s ( A.10.2). The two 
omponents intera
t together and their 
ombination rea
hes a unique state.
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Figure  A.93: A pair of interacting adaptive systems can be treated as a single complex system. The output of one
system forms part of the input for the other system. (re-orient horizontally)Some equations model how a system 
hanges through time. Some of these 
onsistently 
onverge to asingle point a
ross many trials; other systems diverge. It is possible to des
ribe 
omplex intera
tionswith sets of equations. These are relatively easy to solve when the fun
tions are all linear, However,the solutions are more 
ompli
ated when the equations are non-linear.

System DynamicsSystem Dynami
s in
lude feedba
k but also \sto
ks". For instan
e, in a supply 
hain analysis (8.12.1) thegoal might be to keep an inventory of parts roughly 
onstant while they were being used in manufa
-turing. Or, as illustrated in Fig.  A.94, the level of population 
ould be modeled as it is in
reased bybirths and de
reased by deaths. Moreover, there is a positive feedba
k su
h that the more people thereare, the more births there will be. On the other hand, the more deaths there are, the fewer deathswould be expe
ted in the future.The interlo
king feedba
k loops often make 
hange extremely diÆ
ult.This is like a data 
ow diagram (3.10.1). Su
h models 
an provide insight into why some pro
esses areso resistant to 
hange [66].There is no exa
t 
omputational solution for these models. Numeri
al analysis.

Figure  A.94: Flow in a population-growthdiagram. As the population increases, both births and deaths will increase.
(redraw)Exampless of supply 
hain appli
ations (8.12.1).

Causal Models

System Dynamics Models An important 
lass of models are those whi
h 
an represent rates of 
hange,in other words, for models whi
h are highly non-linear. For instan
e, we might like to model howpopulation size 
hanges as food supply 
hanges. These have feedba
k. These are more diÆ
ult to model.
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ause of the intera
tion of fa
tor approximation must be done by numeri
al analysis. System-dynami
models ( A.10.2). Simulations (9.5.0). Causal loop diagrams (Fig.  A.95). Complex systems ( A.10.2).

Figure  A.95: Qualitative causal loop model. (redraw)(check permission)Causation is intergral with explanation (6.3.4)espe
ially explanation in s
ien
e ((se
:s
iexplanation)).Impli
ations for so
ial s
ien
e (4.4.2). Bayes models for 
ausation.
Structural Equation Models Causation (4.4.2) 
an be inferred based on a model. For instan
e, inFig.  A.96 Compare to DAGs and Bayesian Networks.

-X1.1 X1.2

-
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@
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Figure  A.96: Structural equation models can help to validate assertions made about causal relationships.Determining latent variables [6].
 A.10.3. Network Flows and Related Problems

Flow in a NetworkOne appli
ation of graphs ( A.3.0) is to examine 
ow through the network. Queuing theory. Cal
ulating
osts of routing. TraÆ
 on 
ity streets (Fig.  A.97). Predi
ting 
ongestion. Volume and ease of 
ow.Dynami
 models for optimizing 
ow. This also has impli
ations for So
ial Network Analysis.

Figure  A.97: Network flow. (redraw by hand)
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ars at a toll booth and how long they have to wait.Queuing theory.Internet routing tables. Pa
kets in a network.
Spreading ActivationBe
ause so many systems are modeled as graphs, we 
an explore the spread of a
tivation. The nervoussystem 
an be thought of a network in whi
h neurons (nodes) are 
onne
ted by links. When a personthinks about one 
on
ept, related 
on
epts often seem to 
ome to mind. For instan
e, if I think aboutmy dog, I might also think about the park near my house where I walk the dog.This priming e�e
t 
ould be modeled with a
tivation whi
h spreads a
ross the graph. Suppose thereare six nodes 
onne
ted as in Fig.  A.98. An impulse starting from neuron a would go to both b and c.In turn, the impulse would be transmitted from those two nodes on to nodes d and e and then �nallyto node f . Suppose further that only 70% of the a
tivation gets through with ea
h hop so that 0.49 *0.70 = 0.24 and then 0.24 + 0.24 = 0.48. Many additional parameters 
ould be applied to this modelsu
h as only on/o� neurons, a transfer fun
tion (in
luding a maximum a
tivation), and speed of de
ayof the a
tivation.

ba���
@@R bb -

b
 -

bd���be
@@R b f time step

neuron 1 2 3

a 1.00 1.00 1.00
b 0.00 0.70 0.70
c 0.00 0.70 0.70
d 0.00 0.49 0.49
e 0.00 0.49 0.49
f 0.00 0.00 0.48

Figure  A.98: The spread of activation from neuron a to neuron f across three time steps.

 A.10.4. Agent-based ModelsUsing independent agents with lo
al rules to obtain a stable solution in a 
omplex system. This is anatural extension of so
ial networks (5.1.0).One strategy for this uses 
ellular automata. Some simulations is best done with 
onne
ted \
ells".We 
all simulations with these \
ellular automata". Computer models used for weather fore
asting areextremely 
omplex.Agent-based simulations.One example of a 
ellular automata is the Game of Life [30]. (Fig.  A.99).
1. If a cell is dead and if three of its neighbors are alive then it comes alive.
2. If a cell is alive and are two or three are alive, it stays alive.
3. Otherwise, a cell dies or remains dead.

gg
g gg gggb gb gb

gb gbgg
g g

g
ggggg

g g

Figure  A.99: Rules for the Game of Life (top) and an example of its use. The filled circles are newly born.Arti�
ial life models are arti�
ial systems that behave in a fashion similar to the organisms. Randommutation and natural sele
tion are elegant means by whi
h individual organisms, spe
ies, and e
osys-tems intera
t to produ
e stru
tured 
hange at all levels and, typi
ally, in
reasing 
omplexity. The �eld
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ial life uses these same prin
iples to design \environments" in whi
h programs intera
t to pro-du
e 
hange in themselves and the environment itself. This is an example of 
yberneti
 evolutionarymodeling.Computer viruses as a form of arti�
ial life.AxelrodCellular automata 
an be used to take the modeling of living organisms more literally, \arti�
ial life".Analysis of biologi
al pro
esses (Fig.  A.100).
Figure  A.100: An example of artificial life. (check permission)Swarm Intelligen
e.Self-organizing systems.

 A.11. Learning Mechanisms and Machine LearningWe have already explored learning in several pla
es. For instan
e, we have 
onsidered human learning
(4.3.5) and other adaptive systems. Cognition and learning (4.3.5). By \ma
hine learning" we meanalgorithmi
 learning. Simple 
ategorization is sometimes 
onsidered learning; however, here the fo
usis on learning in whi
h an entirely new representation is developed. In most 
ases, the ma
hine learningalgorithm is trained in one phase and its performan
e is tested in a se
ond phase. Generally need largedatasets for statisti
al approa
hes to linguisti
s. Generalization. Over-learning.
 A.11.1. Learning MechanismsWe have learning pro
esses in many pla
es. Learning as taking advi
e. Coa
hing.We brie
y des
ribed human learning earlier (4.3.5); we 
an look more 
losely at learning. A

ording toa behaviorist de�nition, human learning 
an only be demonstrated as a 
hange in behavior sin
e we
an never be sure what representations people use.Types of learning 
an be based on the 
onditions in whi
h they o

ur. \Learning by doing" or \Learningby observation" Another strategy for dis
ussing learning is to fo
us on 
hanges in representation.unsupervised and supervised. There are many possible appli
ations su
h as grammar indu
tion orlearning how to re
ognizing spee
h a
ts. Furthermore, ma
hine learning 
an be applied to adaptiveinterfa
es.For human learning, we 
annot know in detail how human learning o

urs by inspe
tion develop amodel for it (4.3.5). However, we may program a 
omputer to do simple learning.Reinfor
ement learning. Some tasks su
h as learning language seem to involve feedba
k. Learninglanguage from positive examples.Conditioning. Loud noises and bright lights have a dire
t physiologi
al impa
t as an \un
onditionedstimulus". Other stimuli may be 
onditioned by asso
iation with the UCS.Re
e
tion and 
onsolidation seem to be important for human learning (5.11.2).Here, we will fo
us on unsupervised and supervised learning.In some 
ases, a short-
ut 
an be learned. Chunking. Learning patterns of 
he
kers [63].
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e ( A.3.2). Skipping a deep sear
h in a game tree. Parameter learning.
 A.11.2. Unsupervised Machine LearningThe 
lassi�
ation pro
esses dis
ussed earlier assumed a prede�ned 
ategory system. Unsupervisedlearning systems attempt to \dis
over" the stru
ture of the underlying similarity of a 
olle
tion ofobje
ts. For instan
e, sets of abstra
ts for do
uments might be identi�ed. We might think of this as
reating plausible 
ategories.Agglomerative 
lustering versus partitioning approa
hes.Classi�er.Emergent 
on
ept learning (1.1.4).

Quantitative and Hierarchical ClusteringHierar
hies are parti
ularly e�e
tive for organizing information. Cluster analyses tries to �nd a hi-erar
hy to �t data. A graphi
al presentation of the output of a hierar
hi
al 
luster analysis 
alled a\dendrogram" (Fig.  A.101).From 
lustering to 
lassi�
ation.
Vehicles

Bicycles Motorcycles Trucks Tractors Vans Cars

Figure  A.101: Dendrogram that might be obtained from a hierarchical cluster analysis on the distance between six
types of vehicles. Ideally, the clustering will end up with cleanly separated categories.

Qualitative Clustering and Decision TreesWhile the most 
ommon type of 
lustering is qualitative, other 
lustering te
hniques have been proposedwhi
h are based on quantitative attributes. De
ision trees were introdu
ed earlier (3.4.1). Simple de
isiontrees 
an be 
reated by hand, but more 
ompli
ated ones are better made with spe
ialized tools. Twoof the better-known approa
hes for developing de
ision trees are Classi�
ation and Regression TreeMethodology (CART) [22] and ID3 [58]. This pro
eeds in merging from the bottom up (Fig.  A.102).These methods work well for data sets that are linearly separable but models su
h as ba
k-propagation
( A.11.4) are better for problems where non-linear partitions are possible.

Minimum 24-hour systolic blood pressure > 93
yes no
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�
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Low risk
Age > 62.5

yes no
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High riskSinus TachyCardia present? d
�
��	

@
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Low risk High risk

yes no

High Low

Low

High

Figure  A.102: CART decision tree for[21] and a schematic of the partitions it makes for treatment of hospital patients.
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ScalingMeasurement (9.3.0)/ Metri
 and non-metri
 measurement.Transformations.Transitivity.Multidimensional S
aling (MDS). Multi-Dimensional S
aling (MDS) is related to 
luster analysis.MDS attempts to �nd the �t of data of high dimensionality into a quantitative method whi
h 
an beused to form non-hierar
hi
al 
lusters a lower-dimensional spa
e.
Self-Organizing Systems and MapsWhen a 
rystal forms, the atoms or mole
ules in it align themselves in highly-ordered patterns. Thisis a type of self-organizing system. Typi
ally, these have lo
al units that organize into larger, more
oherent patterns. So
iety, the Web, and life itself are all generally 
onsidered to be self-organizingsystems. This is a type of unsupervised learning.FMRI eviden
e for 
on
epts separate from language [?℄.

 A.11.3. Supervised Machine Learning: Learning Category M embership and Similar-
itySupervised learning algorithms use feedba
k about the results of an a
tion from the environment toimprove performan
e. Be
ause 
lassi�
ation is so ubiquitous, we often think of learning as improvingthe quality of 
lassi�
ation. Supervised learning requires a representation to be updated so that thenext time the behavior is emitted, it is done better.This is sometimes 
alled learning by trial and error. From design to requirements.A
tive learning. A pro
ess of improving 
ategorization. For instan
e, we might sele
t the optimaltraining set.Feedba
k 
an be either positive or negative. Instrumental learning is learning whi
h helps a person toa

omplish some goal.The pro
edures also di�er in their representation. This se
tion fo
uses on neural networks, but otherwell-known supervised learning pro
edures in
lude geneti
 algorithms ( A.11.6), Hidden Markov Models
( A.5.5), and Bayesian learning ( A.8.2).For instan
e, text 
ategorization (10.6.1) might use Bayesian te
hniques.Issues for Supervised Learning. How mu
h training? How good is generalization. Transfer (4.3.5).Classi�ers.Supervised algorithms generally require several training 
y
les. By gradually improving the model, thealgorithm may be able to perform better on later tasks. This is a pro
ess known as \hill 
limbing". Notevery task is amenable to every supervised learning algorithm. For instan
e, if the pro
ess of graduallyimproving the weights rea
hes a lo
al minimum whi
h the algorithm 
annot pass to rea
h the globalminimum.Supervised learning algorithms use feedba
k. Some algorithms will not ne
essarily 
onverge and showan improvement. Measures of learning in
lude generalization to new situations. Another problem isover-generalization, whi
h is learning about the details of a spe
i�
 training set and missing e�e
tivegeneralization.Training strategies. Training the network. Su

essive approximations and learning.When there is a 
omplex model, This is known as \
redit assignment". Sometimes, it may be diÆ
ult
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h fa
tor 
ontributes to the result. Therefore, it will be diÆ
ult to update the rightpart. Changing the model.
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Figure  A.103: For some types of predictions, it is helpful to categorize the input values but in other cases, using
numerical values without categorization is more effective.

 A.11.4. Learning in Neural NetworksNeural networks may be thought of as a style of 
omputation. Some approa
hes to learning are modeledloosely on biologi
al systems that show learning.Neural networks are 
omputational models whi
h 
an be applied to learning algorithm in whi
h the
omputation and representation are distributed a
ross inter
onne
ted nodes. Neural networks areloosely modeled on neurons in the nervous system. Ea
h neuron is a very simple pro
essing unit.Typi
ally, ea
h neuron is a
tive and makes a 
ontribution. Thus, the 
omputation is parallel andemergent. Neural networks are numeri
 and do not expli
itly model symbols and 
on
epts. Thus, theyprovide an alternative to symboli
 pro
essing models. It remains un
lear whether these system 
anlearn to manipulate symbols.Neural nets and pattern re
ognition. Modeling the responses of 
onversational agents. Neural networksare used in many ways in
luding 
lassi�
ation. This 
an be used in general data mining (9.6.5).
Figure  A.104: Distributed representations. (redraw)

Learning Different Types of Representations

Overview of Neural NetworksThe basi
 neural network model is 
omposed of neurons 
onne
ted by a
tivation pathways. Ea
hneuron 
ombines the inputs from the a
tivation paths and applies a transfer fun
tion to determine howmu
h a
tivation will be presented. The neural networks 
an learn representations that 
hara
terize thepatterns of inputs they have re
eived.Most retrieval systems employ indire
t indexing terms to point to the 
ontent. An alternative is tohave the 
ontent serve as its own index. Content-addressable memories.\Neurons that �re together wire together." Typi
ally, information is represented in the neural net-works by the weights and a
tivation algorithms. The representations developed by neural networks aredistributed and diÆ
ult to examine. They are an ex
ellent example of non-symboli
 pro
essing. How-ever, neural networks have been 
riti
ized for not being able to yield explanations for how they rea
hde
isions. More often, supervised learning algorithms gradually 
hange the weights. Neural networkssupport asso
iative learning (4.3.5). A simple assumption, whi
h is known as Hebbian neurons, states



 A.11. Learning Mechanisms and Machine Learning 551that when two neurons are both a
tive at the same time (i.e., asso
iated), then the strength of the linkbetween them is in
reased [37] (Fig.  A.105).
∆−~ - n ∆−n - ~ ∆+~ - ~

Figure  A.105: According to the Hebbian learning model the weight, or strength of association, between two neurons
should be increased (∆+). when the neurons are reacting the same way. That is, when they are both ON (filled
circles) (left). If they are reacting differently (center and right), the strength of the association between them is
decremented (∆−).

Back-propagation AlgorithmTo demonstrate even simple reasoning, a learning system should be able to at least learn basi
 Booleanoperations. The Boolean XOR is similar to the Boolean operations des
ribed earlier (3.9.2). The XORwas originally believed not to be learnable by neural networks. The ba
k-propagation algorithm [61]be
ame parti
ularly well-known when it was demonstrated that it 
ould learn the XOR logi
 fun
tion(Fig. 3.58). This is a type of non-linear regression.There are many ways 
olle
tions of neurons may be 
onne
ted. This is the foundation for the repre-sentation. Fig.  A.106 shows a simple three-layer neural network. The input values are shown by theweights of the links, whi
h 
onne
t them to the hidden-layer neurons. This is, essentially, a bottom-uppro
ess (10.1.5). The three-layer model is parti
ularly e�e
tive for data redu
tion in whi
h the numberof hidden units is small 
ompared to the number of inputs or outputs.The basi
 idea is that the weights are updated so the network is more likely to produ
e the desiredresult after the update. Ea
h training trial has two phases. The forward-propagation follows a typeof spreading a
tivation network ( A.10.3). However, the basi
 spreading a
tivation approa
h is adaptedwith the in
lusion of bias units, negative weights, and synapses with transfer fun
tions (Fig.  A.106).The level of a
tivation on the hidden layer is determined by a simple formula whi
h integrates thea
tivation from the inputs. The same pro
ess is repeated starting with the hidden units to obtain thea
tivation on the output. For a network whi
h has already been trained, the output values shouldmat
h the targets.
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b
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(0.4)

output layer

Pattern

layer neurons activation activation activation activation

input left 0.0 1.0 0.0 1.0
right 0.0 0.0 1.0 0.0

hidden left (0.1) 0.0 (0.6) 0.8 (-0.4) 0.2 (0.1) 0.0
right (0.1) 0.0 (-0.4) 0.2 (0.6) 0.8 (0.1) 0.0

output (0.4) 0.2 (0.8) 0.9 (0.8) 0.9 (0.4) 0.2

target 0.0 1.0 1.0 0.0

Figure  A.106: Forward-propagation in three-layer neural network. Note that the weights (shown in parentheses
in the schematic) are preset to value which solve the XOR. The activation spreads from the input layer through
the hidden (middle) layer to the output layer. Activations are collected at synapses, which are shown by horizontal
lines. A transformation is applied to the synapse activation shown in parentheses in the table to produce the neuron
activation.For the neural network to demonstrated learning (i.e., for the weights to be updated) we 
an use thedi�eren
e from the target along with the strength of the a
tivation on ea
h weight by a small amount.These 
orre
tions are made on the weights from the outputs ba
k to hidden units and then on theweights ba
k to the input units.
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 A.11.5. Deep LearningFeature extra
tion.
 A.11.6. Genetic AlgorithmsDNA is the representation for adaptive biologi
al systems. In the biologi
al systems, learning is a
-
omplished from mutation followed by natural sele
tion. Sin
e we know that biologi
al spe
ies adaptthrough evolution, it may be possible to imitate them. This pro
ess 
an be simulated with binarystrings representing a gene pool (Fig.  A.107). Changes are introdu
ed by mutation of the binary string.\Cross-overs" are a type of mutation in whi
h segments of two strings are swapped (Fig.  A.108). Nat-ural sele
tion 
an then be simulated by sele
ting those mutated segments that provide better responsesto the problem the initial patterns. mutation

?natural sele
tion
?reprodu
tion of survivors -

6
�

Figure  A.107: Steps in evolution are emulated by genetic algorithms.

Initial Ending
Patterns Patterns

1 1 | 0 0 0 1 1 | 0 1 1
1 0 | 0 1 1 1 0 | 0 0 0

Figure  A.108: In genetic algorithms, new bit patterns may evolve by a process of “mutation” and “natural selection”.
An example of crossover from a genetic algorithm is shown; the last three bits have been flipped.

 A.12. Biological Basis of Human and Social Information Pro cess-
ing
 A.12.1. Biological Bases of Social BehaviorSo
ial brain. Aggression. Empathy.Animal models for so
ial behavior. Fig. ??.

Figure  A.109: Chimp grooming. (check permission)

 A.12.2. Brain ScienceWhy brain s
ien
e is relevant for information s
ien
e.While we have generally fo
used on the use of information rather than the underlying infrastru
ture.For human information pro
essing we have 
onsidered 
ognition (4.3.0) but not the brain. Here, weinvestigate that. Neurology. Cognition systems. Hierar
hi
al sensory pro
essing. Metaboli
 
ost for
ognition.S
enario visualization [?℄.Plasti
ity. Language learning up to a 
ertain age. Sensory and brain development.
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Figure  A.110: Basic brain structures.Cognitive metaboli
 
osts. Metaboli
 
osts in multitasking. Motor behavior (4.2.4).Perhaps some overlap of brain inputs helps to give people the distin
tive 
apabilities[64]. Fa
e blindness.
Spatial BrainSpatial brain. Grid 
ells for lo
ation.
Brain StructureModularity of brain stru
tures.Left-handedness.synapses > neurons > network > maps > nervous systems
Macro Structure Regions for vision, emotions, motor 
ontrol.There is some 
ross-talk among neurons in the brain. Priming. Even apparently 
ross-talk betweenstru
tures. Holding a hot 
up of 
o�ee a�e
ts rating of the warmth of other people.The human brain is vastly di�erent from sili
on 
omputers and their programming. The brain is amass of neurons whi
h are inter-
onne
ted by an even larger number of axons.The physi
al stru
ture of the brain shows a lot of spe
ialization. Right brain versus left brain [?℄.identifying brain fun
tion of di�erent brain hemispheres. Left brain tends to be logi
al and the rightbrain tends to be intuitive.Hippo
ampus. Spatial neurons.So
ial brain. Fa
e re
ognition. Empathy.Fear and aggression. Emotion from the amygdale.

Figure  A.111: Hubel and Wisel neurons. (check permission)Mirror neurons and empathy.Motor behavior (4.2.4) and sensation (Fig.  A.112).Mi
ro-stru
tures. Mirror neurons.Brain s
ien
e and language learning. Bro
a and Werni
ke's Areas are important in language.
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Figure  A.112: Brain motor behavior.

Neurons Neurons.Synapses are adaptive. Neurotransmitters. Dopamine.The ability of the human brain to develop new representations seems to 
hange with growth.
Brain FunctionFurthermore, the fun
tions of many regions of the brain 
an be 
learly identi�ed. Right brain versusleft brain [11]. The left hemisphere of the brain is generally asso
iated with spee
h. One part, Bro
a'sArea, is involved in spee
h and language produ
tion. While another part, Werni
ke's Area, is involvedin spee
h understanding. Moreover, these may be related to language diÆ
ulties su
h as dyslexia (4.9.3).Unreliable 
omponents (i.e., neurons) produ
e generally 
oherent thinking.Visual features and visual sear
h.Magneti
 resonan
e imaging (MRI) fMRI whi
h measures in
reased blood 
ow for di�erent 
ognitivea
tivities.

Figure  A.113: Functional magnetic resonance imaging (FMRI) has proven very useful for determining which parts
of the brain are most involved in high level cognitive processing. (check permission).Some of these studies have revealed spe
ialized stru
tures of the brain. Regions of the visual 
ortexspe
ialized for fa
es, pla
es, bodies [41] (Fig.  A.114).Hippo
ampus and episodi
 memory.Expert 
hess players versus novi
es show a
tivity in di�erent regions of the brain when playing 
hess.Neural plasti
ity.Mental imagery and vision.Pain.Musi
 [48].Category-spe
i�
 
ells. Grandmother 
ells. Grammar 
ells. Cells whi
h respond to stimuli whi
h havebeen attended to a lot.Cons
iousness and intentional behavior.
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Figure  A.114: Face detection cells vs frequent item cells.[41]. (check permission)Neural network models ( A.11.4) and broader modeling of neural 
ir
uits.Modular system with lots of feedba
k [70].Sleep and memory 
onsolidation [7].Multiple memories. Amnesia diÆ
ulties of forming long-term memories.
 A.12.3. Affect and Emotion

Figure  A.115: Typical time-course for physiological arousal. A loud noise may cause an “fight or flight” reaction”.
(redraw)Oxyto
in.

AddictionMultiple 
ompeting for
es. Opponent pro
ess model of addi
tion. Pleasure and stress.
Figure  A.116: Model for addiction.

 A.12.4. LearningAs with the 
omplexity of neurons themselves, there are many me
hanisms for learning. There is bothplasti
ity and wired-in learning. Some studies show that neural organization of information 
ontinuesas late as 18 years of age.
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 A.12.5. Brain SimulationMa
hine learning ( A.11.0). .
Neural Prosthetics Neural prostheti
s.Neuro-te
hnologies.Moral judgment,

 A.13. Encryption and CryptographyEn
ryption is a foundation for information se
urity and appli
ations su
h as priva
y (8.3.1) and e
om-mer
e (8.12.5). We brie
y introdu
ed en
ryption earlier ( A.13.1); here we extend that. These algorithmsare triggered by a \key" whi
h is a large number that sets the algorithm. Many of the most robusten
ryption proto
ols are based on the diÆ
ulty of fa
toring 
ombinations of prime numbers. Amountof 
omutation is a 
onsideration for routine use. Brute for
e atta
k to break en
ryption.
Figure  A.117: Bletchley house: The site of British code breaking work during World War II. (check permission)Hidden Markov models ( A.5.5) 
an be useful for 
ode-breaking. Spe
i�
ally, they 
an help to identifynon-random pro
esses.

 A.13.1. EncryptionEn
ryption is a base te
hnology whi
h 
an fa
ilitate se
urity. En
ryption s
rambles data, making itdiÆ
ult to inter
ept and read. En
ryption supports for information assuran
e. When important data
an be easily and illegitimately 
opied, and other information 
an be as easily forged, it is natural tolook for te
hnologi
al solutions to the problems raised by su
h a
tivities. For all pra
ti
al purposes,modern en
ryption algorithms 
annot be broken. In a sort of arms ra
e, sophisti
ated te
hnologies forprote
ting information often produ
e sophisti
ated atta
ks by people seeking to brea
h those safeguards.The en
ryption algorithms may be embedded in a servi
e to aid in information se
urity.
Secret CodesCodes and en
ryption prote
t information from being seen by people who do not know the key. Someof the simplest 
odes are \substitution 
odes" in whi
h one letter is repla
ed by other letters. The
ode shown in Fig.  A.118 is formed by shifting ea
h letter 13 positions in the alphabet. These rotatedletters are substituted for the original letters. We might easily guess that the rotated letters v, b, anda are among the most 
ommon in the language sin
e they appear twi
e in the 
oded word. In fa
t, wesee that these letters represent i, o, and n. With suÆ
ient samples of text, su
h simple 
odes are easilybroken.

e t a o i n s r h l d c u m f p g w y b v k x j q z

Figure  A.118: Rank order of the letters in the English (Latin) alphabet based on their frequency.

original i n f o r m a t i o n

ROT13 coded v a s b e z n g v b a

Figure  A.119: The letters of the word in the first line are shifted by 13 letter positions (ROT13) in the second line.
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Single-Key (Symmetric) EncryptionModern en
ryption s
hemes are mu
h more diÆ
ult to break. One family of en
ryptions is symmetri
;that is, the same algorithm key 
an en
rypt and de
rypt these 
odes. The Data En
ryption Stan-dards (DES) ( A.13.2) is 
alled \symmetri
" be
ause the en
ryption and de
ryption keys are the same(Fig.  A.120). Without knowing the key, the only pra
ti
al way to break these 
odes is by testing allpossible values for the keys. Whether, and how qui
kly, the algorithm 
an be broken depends on thesize of the fa
tors and the speed of the 
omputers trying to break it.
Figure  A.120: Symmetric-key encryption uses the same key for encryption and decryption.

Public-Key (Asymmetric) Encryption and the Public Key Infrastructure (PKI)The publi
-key algorithm uses two asymmetri
 keys. One of the keys en
rypts messages while these
ond de
rypts them. The details of the algorithm are given in  A.13.3. Most often, the publi
 keyalgorithm is used to prove that information is from an authenti
 sour
e. It 
ould be a digital signatureor a stamp to validate a Web site. In this type of appli
ation, the en
ryption key is kept se
ret and thede
ryption key is made freely available. If a Web site is able to be read using the de
ryption key theywe 
an be 
on�dent it was en
rypted by the holder of the private key. It is also possible to publishthe en
ryption key and keep the de
ryption key se
ret. In this latter approa
h, anyone 
an en
rypt amessage and send it to the holder of the de
ryption key, but only that person 
an read the message.Signing 
erti�
ates.
Figure  A.121: Public-key encryption is asymmetric with one key to encrypt (write) the file and a second key to read
it.Beyond en
ryption algorithms, an infrastru
ture is needed to allow distributed 
omputers to ex
hangeinformation se
urely. A 
erti�
ation authority guarantees that a publi
 key a
tually belongs to a 
ertainorganization (Fig.  A.122). Spe
i�
ally, the 
erti�
ation authority provides an ele
troni
 
erti�
atewhi
h 
an validate a publi
 key (Fig.  A.123); it also sets time limits during whi
h a 
erti�
ate maybe a
tive. It provides its own en
ryption and a temporal window in whi
h it 
an be used. Messageauthorization 
ode.

Key Management and Encryption without Transmitting KeysPro
edures for se
ure management of keys remains diÆ
ult. The key needs to be delivered to the
orre
t re
ipient. If the keys are distributed by an inse
ure 
hannel, they 
ould be stolen. Be
ause ofthe diÆ
ulty of key management, a pro
edure that 
reates an en
rypted 
hannel without transmittingkeys 
an be useful. The DiÆe-Hellman pro
edure ( A.13.2) 
an be used to ex
hange information se
urelybe
ause the keys are never transmitted in the open. This is the prin
iple behind SSH.
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Secure HTTPS

Server

Sequence Description

0. Certification authority sends private key to HTTP server. This is often
done when server site is set up.

1. User contacts merchant’s HTTP server.
2. HTTP server suggests switching to secure server.
3. User asks for merchant’s public key from certification authority.
4. Certification authority replies with merchant’s public key.
5. User merchant’s contacts secure server.
6. Secure server responds and user can decrypt page with public key.

Figure  A.122: The steps in authentication with a certification authority. (FIG)

Field Description

Version Version
Serial number Unique serial number
Signature Algorithm used to sign certificate
Issuer Trusted entity
Validity Dates for which the certificate is valid
Subject Name of the certificate holder
SubjectPublicKeyInfo Algorithms for which the certificate is valid
IssuerUniqueID ID of trusted entity
SubjectUniqueID ID of certificate holder
Extensions Extensions

Figure  A.123: The main fields of an electronic certificate (adapted from[3]).

Digital Signatures and Digital Time-StampsHashing is a pro
edure generally produ
es an index number from 
omplex number. This unique number
an be used as a digital signature. Time-stamps are an appli
ation of digital signatures whi
h des
ribewhen an information resour
e was 
reated. An inventor might want to be able to verify the date onwhi
h his or her invention was 
reated, or a hospital may want to 
on�rm the time and date when anX-ray of a patient was taken. Se
ure hashing, whi
h is similar to en
ryption, generates a unique hash
ode for the obje
t; this 
an be widely published so that its time 
annot be disputed. Simply in
ludinga digitized time in an ordinary en
ryption is not proof be
ause that time-stamp 
ould have been forgedbefore the en
ryption. This 
an be a te
hnique for authenti
ation.A time-stamp system is based on publishing a rolling hash 
ode (Fig.  A.124). Provides trust (5.2.3).Content en
rypted with that key must have been in that sequen
e based on a re
onstru
tion of thesequen
e of values. The result is published in a newspaper 
lassi�ed advertisement. Be
ause thenewspaper is dated and widely distributed, the time stamps must have been generated on that date.
Encryption PoliciesEn
ryption attempts to s
ramble messages so thoroughly that they 
annot be de
oded ex
ept by some-one with the key. This te
hnology may be abused; it 
ould enable 
riminals to 
ommuni
ate withoutany possibility of dete
tion. The U.S. government has attempted to 
ontrol the distribution of en
ryp-
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Figure  A.124: Steps in time-stamping digital objects. The documents are hashed and the hashes are stored in a
list. This list is hashed and the resulting hash code is published in a newspaper. As with any public-key system, the
list can be read, but the time-stamp agency can prove that only they could have produced that hash. (FIG)tion te
hnology by prohibiting its 
ommer
ial export. Criti
s of this poli
y argue that the en
ryptionte
hnology should be freely available. However, that e�ort has not been generally su

essful and thedebate has shifted to whether there should be a way for government oÆ
ials to over-ride the en
ryp-tion in some 
ases. Priva
y advo
ates disagree with the in
lusion of an over-ride 
apability. Currenten
ryption te
hnology is so good that for all pra
ti
al purposes it 
annot be broken. The most seriousproblems with 
redit 
ard authorization on the Web have not been with the algorithms, but with the
ontrol of de
rypted 
ard numbers that were stored in a database.

 A.13.2. Digital Encryption Standard (DES)DES is the basi
 pro
edure for symmetri
 key en
ryption. It pro
eeds through a series of permutation,rotation, using the Boolean XOR operator (3.9.2). This is fairly fast and is reversible, but 
an be diÆ
ultto 
ra
k depending on the number of bits in the XOR. A s
hemati
 of the steps is shown in Fig.  A.117.
1 10111000 00101110
2 - -
3 - -

Figure  A.125: Simplified version of DES using eight bits, rotation, and XOR.

 A.13.3. Public-Key Encryption AlgorithmAppli
ations of publi
-key en
ryption were des
ribed earlier ( A.13.1). Here we explain the RSA publi
-key en
ryption algorithm following[69]. This is sometimes 
alled a \trapdoor" or \knapsa
k" algorithmbe
ause it is easy to go in one dire
tion but diÆ
ult to go in the other dire
tion. This is espe
ially truefor very large values. Begin by sele
ting two prime numbers, p and q and an en
ryption key, e. Thosevalues 
an be used to derive the de
ryption key, d (Eq.  A.20).
(d ∗ e) mod ((p − 1)(q − 1)) = 1 ( A.20)A message, M , 
an be en
rypted to a 
ipher, C, with Eq.  A.21. When we want private en
ryption ofmessages, e and p ∗ q together 
an be used as a \private key".

C = M e mod (p ∗ q) ( A.21)
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ipher 
an be de
rypted using Eq.  A.22 based on p, q, and d. While d and p ∗ q may be known, aslong as the individual values of p and q are private, it is extremely hard to �nd e.
M = Cd mod (p ∗ q) ( A.22)As an example, if we took two prime numbers, p = 11 and q = 3 and we sele
t e = 13. d 
an be
al
ulated from Eq.  A.20.3

(d ∗ 13) mod((11 − 1)(3 − 1)) = (d ∗ 13) mod (20) = 1 ( A.23)

d = 17 ( A.24)For instan
e, this might be the ASCII 
ode a text message. Now, imagine that we want to transmitthe number \9" as a message, M . The 
ipher 
an be 
al
ulated with Eq.  A.21 along with the valuesof e. 4

C = 913mod(33) ( A.26)

C = 15 ( A.27)The re
eiver 
an then de
ode the 
ipher using the de
ryption key, d and the value of p∗ q and Eq.  A.22to re
over the value of the message, M .
M = 1517mod(33) ( A.28)

M = 9 ( A.29)Be
ause the publi
-key 
al
ulations are 
omputationally expensive, an entire message is typi
ally noten
rypted with this te
hnique. Rather, the DES algorithm may be used to en
rypt the message andonly the DES key is en
rypted with the publi
 key algorithm.
 A.13.4. Public-Key Infrastructure (PKI)
Certification Authorities and Electronic Certificates Fig.  A.123 shows the steps required by a 
erti�
ationauthority.

- - -

Figure  A.126: Stream cipher.

 A.13.5. Cryptographic ProtocolsEn
ryption 
an be the foundation of low-level proto
ols. For instan
e, employing middleware to provideanonymity.The en
ryption pro
edures just des
ribed 
an be applied in many ways, Cryptographi
 that managesdi�erent types of intera
tion. Determining the highest salary among a group of people without beingable to identify who has it.En
ryption is possible solution to se
urity rather than a system solution.\Pseudonym" systems.
3For large values, this calculation can be simplified with Euclid’s theorem.
4Note that even for small values these exponents will overflow most computers. The computation can be made more tractable

by decomposing the exponents. For instance:

913mod(33) = [96mod(33) ∗ 95mod(33) ∗ 92mod(33)] mod(33) ( A.25)



 A.14. Servers and Networks 561Compared to 
redit 
ards, 
ash provides anonymity be
ause there is no ele
troni
 trail.Se
ure multiparty 
ommuni
ations. Prote
ting priva
y (8.3.1) and data mining. A bank 
an guaranteea payment without the sour
e of the funds being dire
tly identi�ed. This provides about the same levelof anonymity as 
ash (Fig.  A.127) [23].
Figure  A.127: An example of a cryptographic protocol for ecommerce. In the top panel the user requests a
certificate from the bank for a fixed amount. In the bottom panel, the certificate is given to a merchant. (adapted
from[23]). (redraw)

 A.14. Servers and NetworksWe have seen range servers from databases, to Web sites, to repository servers. In middleware (7.7.1). Aserver is a networked 
omputer that spe
ializes in delivering data and information. Network se
urity.Peer-to-peer.This does not in
lude the human or organizational issues.We have tou
hed on servers in many se
tions.
 A.14.1. Database SystemsDatabase management systems (DBMS) ((se
:dbmsbasi
)). Indeed, these may be federated systems inwhi
h 
ase they would are distributed databasemanagement systems (DDBMS).While we emphasized databases for retrieving information, many databases also need to store informa-tion re
eived from users.Unitary transa
tions. ACID: Atomi
, Consisten
y, Isolation, DurabilityCRUD: Create, Read, Update, Delete.

Transaction ManagementNested and distributed transa
tions.Database transa
tions. Lo
k to make sure the 
annot be 
hanged by another pro
ess. Prevent 
on
i
tsof two disk a
tivities at the same time.Several transa
tions may o

ur simultaneously. Con
urren
y 
ontrol. Suppose you are online andbrowsing for an airplane ti
ket. You would be very annoyed if you have pi
ked a 
ight and seat butbefore you 
omplete the pur
hase somebody else slips in and pur
hases that seat. This problem 
anbe helped by 
reating a lo
k on the seat one you request it. While the lo
k in e�e
t nobody else 
ansele
t that seat.Avoid 
on
i
ts and deadlo
ks.Rollba
k points.Che
k-in and 
he
k-out to make sure the do not overlap.Two-phase lo
king (Fig.  A.128). Growing phase and shrinking phase. Lo
king phase and release phase.
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Figure  A.128: Two-phase locking. (redraw)

Network DatabasesThe Web is highly distributed and there are no guarantees as to information being available.A variety of systems have been developed for managing the 
oordination of the network infrastru
ture.
Placement in the Network There is often a tradeo� between disk storage and network usage. Frequentlya

essed 
ontent 
an be made available. Mirroring.[??]

 A.14.2. Web ServersFrom Web servers to repository servers and 
ontent management systems (CMS) (7.8.0).
Web Server LogsServers re
ord a great deal of information about ea
h transa
tion (Fig. ??).Tools for analysis and improved advertising. Able to �nd IP addresses.

208.219.77.29 - - [17/Aug/1999:11:57:58 -0400] “GET /robots.txt HTTP/1.1” 404 207
208.219.77.29 - - [17/Aug/1999:12:01:38 -0400] “GET /snews/ HTTP/1.1” 200 822
208.219.77.29 - - [17/Aug/1999:13:59:46 -0400] “GET /snews/ HTTP/1.1” 200 822
208.219.77.29 - - [17/Aug/1999:14:24:38 -0400] “GET /snews/browse.html HTTP/1.1” 200 665
208.219.77.29 - - [17/Aug/1999:14:36:24 -0400] “GET /snews/form.html HTTP/1.1” 200 1080
208.219.77.29 - - [17/Aug/1999:16:16:51 -0400] “GET /snews/form.html HTTP/1.1” 200 1080
208.219.77.29 - - [17/Aug/1999:16:24:29 -0400] “GET /snews/MDUD/pageImages.html HTTP/1.1” 200 856
208.219.77.29 - - [17/Aug/1999:19:26:07 -0400] “HEAD /snews/MDUD/pageImages.html HTTP/1.1” 200 856
208.219.77.29 - - [17/Aug/1999:19:28:10 -0400] “HEAD /snews/NYBE/pageImages.html HTTP/1.1” 200 425

Figure  A.129: Web Server log files. Each of part of the Web page to be retrieval such as individual figures is
recorded separately.Anonymizer.
omCa
hing of Web pages depends on Web usage patterns. It 
an be on the browser or in the networks;for example at a proxy server.

 A.14.3. Link Resolution for Digital LibrariesSome links may be 
ontext sensitive. For instan
e, links for an appropriate 
opy may depend on
ontra
ts. Links in the lo
al 
ontext.One strategy for organizing virtual or distributed 
olle
tions employs \Digital Obje
t Identi�ers"(DOIs). These unique 
odes are 
omposed of a pre�x that des
ribe the dire
tory and publisher, and asuÆx that assigns the obje
t a 
ode of the publisher's 
hoosing.Manage a

ess rights. Digital obje
t identi�ers (DOIs) ( A.14.3).
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opy" linking servi
e [55] uses the Handles proto
ol [40] ( A.14.3). It is an \appropriate
opy" in the sense that a 
ontrast or li
ense exists for a

essing that 
ontent. This is also termed\
ontext-sensitive linking" (Fig.  A.130). From DOIs ( A.14.3).

Figure  A.130: Context-sensitive linking[12]. (check permission)

 A.15. Transmission and NetworkingIt is not the intention of this text to provide a general 
ourse on transmission; rather, we fo
us ondata transmission. Ideally, transmission should be fast, 
exible, and real-time. This 
an greatly a�e
tmultimedia presentations.

Figure  A.131: Telephone lines in rural Virginia (from LC)Distributed proto
ols.
 A.15.1. Data TransmissionData has to get from one pla
e to another. Transmission 
osts are falling rapidly and in
reasing inportability.Digital versus analog. Asymmetri
 links. The ba
k 
hannel does not ne
essarily have to be as highbandwidth. Symmetri
 network, have sour
es equal to sinks.

Broadcast and WirelessThere are many te
hnologies and many ways of delivering 
ontent. In a broad
ast transmission, anantenna sends signals into the air; broad
ast is widely used by traditional analog radio and videostations. Broad
ast normally sends signals to anyone with an appropriate re
eiver.
Spectrum The ele
tromagneti
 spe
trum in
ludes radio frequen
ies used for 
ommuni
ation servi
e.Di�erent parts of the spe
trum are useful for di�erent appli
ations. These are li
ensed to avoid 
on
i
tsin 
ommuni
ation. This li
ensing regulates, for instan
e, the number of broad
ast television stations
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ated by the Federal Communi
ations Commission (FCC).In some 
ases, the spe
trum is quite valuable and it is generally au
tioned to the highest as a publi
resour
e. Di�erent parts of the spe
trum are suitable for di�erent appli
ations. Fig.  A.132 shows howthe spe
trum is divided for 
ommuni
ations.

Figure  A.132: Chart showing the allocation of electromagnetic spectrum for communication in the U.S. (left) and a
detail of the chart (right)[53].

Wireless Wireless transmission allows for portable, and hen
e nearly ubiquitous, dissemination ofinformation. When broad
ast is used for personal 
ommuni
ations. Analog versus digital radio versusIR transmission mi
rowave.Who owns wireless spe
trum. Is it a publi
 resour
e. Commons wireless networks. Sharing bandwidth.For instan
e, garage door openers share a spe
trum with �ghter air
raft.Wireless and mobility of servi
es.This has the potential to make highly portable servi
es.Cellular { what is a 
ell. Mi
ro
ells. Fig. ?? shows how 
ells work in a 
ellular telephony system.Coordination between 
ells.
Figure  A.133: Cellular telephony.Multimedia over wireless poses substantial bandwidth diÆ
ulties.

Spread Spectrum With traditional radio, the broad
ast is on a single frequen
y. However, it is alsopossible to spread information a
ross di�erent wavelengths of the spe
trum (Fig.  A.134) [?℄.
Satellite Relay Satellites provide 
ommuni
ation 
overage in remote lo
ations. Several generations ofsatellites have been deployed. One important di�eren
e between them is their orbits. \Remote sensing"satellites. There are two fundamental types of 
ommuni
ations satellites, those in Geosyn
hronousEarth Orbits (GEOs) and in Low Earth Orbit (LEOs). The GEOs stay in one position above theearth. GEOs at X KM (24K miles). footprints. LEOs are not geosyn
hronous. Several sets of LEOssu
h as Teledesi
 and Iridium are being deployed. Delay in satellite 
ommuni
ations makes two-wayvoi
e links diÆ
ult.
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Figure  A.134: In spread-spectrum communications, parts of a message are communicated on different wave-
lengths. Because different wavelengths are used, the message can be robust and difficult to intercept.

Location TechnologiesFor games and for mobile servi
es. Coupon alert during shopping,Providing better bus servi
es. How to optimize bus servi
es for times. Au
tioning spa
es (perhaps bybetter pri
es.Managing lo
ation with trado� of bandwidth and energy use.Lo
ation-related sear
h. Walking routes by mining previous traje
tories. Finding a stationary obje
t.
Global Positioning System (GPS) Fig.  A.135 illustrates how a GPS 
an 
al
ulate the position of anobje
t on earth based on the di�eren
e in the timing of signals re
eived from the two satellites. Betterresolution, in
luding 3-D position, 
an be obtained by using the signals from three or four satellites.

Figure  A.135: Global Positioning System (GPS) position is obtained from satellite positions.

Indoor Location Properties of waves. Wave propogation method of lo
ation.Signal strength-maps. Know 
hara
teristi
s of of the signals in a building. Problem of people walkingaround buildings. Very 
ostly and time-
onsuming. Priva
y problems in all this monitoring.
Navigation Based Position Accuracy Navigation through spa
e. Inertial navigation systems (INS) Canuse navigation for Compass, A

elerometer, Gyros
ope.Coordinating lo
ations with 
amera or image pro
essing.Understanding the meaningfulness of behavior. Judging a person's intentionality for their motion.
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 A.15.2. Digital NetworkingDigital networking makes distributed information systems possible. The information revolution dependson getting the information there. Internet versus the Web.[??]Error 
ontrol in networks.
Packets and RoutingA distributed network is designed 
an be robust to failure. In a 
entralized network 
onsider whathappens to a failure at the 
entral node.Pa
kets are really sets of ele
tri
al pulses.SniÆng.
Local Area Networks (LANs) The 
on�guration of the network re
e
ts the Robust networks (Fig.  A.136).This is analogous to so
ial intera
tion (1.2.1). How best to get from one pla
e to another.
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Figure  A.136: Three local area networks are illustrated. In a ring (right) the packets will be sure to reach all nodes.
The other networks require routing. The distributed network should be more robust to failure than the “star” network.Ring network.

Circuits and NetworksIn traditional telephony, there is an ele
tri
al 
ir
uit between the mouthpie
e of one telephone and there
eiver of the other telephone. This dis
ussion fo
uses on pa
ket networks. A pa
ket is a 
olle
tion ofele
tri
al signals that 
arries both header information and data. The header information des
ribe thedestination of the pa
ket and the type of proto
ol it follows.Ethernet is the most 
ommon pa
ket network but many others have been proposed. Ethernet is theprimary example of CMDA (
ollision networks) but in
reasingly it is being adopted by wireless systems.This provides robustness, but not if saturated. Ethernet on a single network. Gigabit Ethernet,[??] VBR(Variable Bit-rate Transmission), ATM layers | physi
al layer, ATM layer, adaptation layer.Non-CDMA networks.
Addresses and PortsIn a 
ir
uit where several ma
hines are 
onne
ted, the ma
hines must be given addresses to distinguishthem from ea
h other.
Addresses and Domains Typi
ally, networks are inter
onne
ted. To go beyond a lo
al network requiresgateways for routing to other networks. IP and Class B, C, D address,There are many poli
y issues surrounding internet naming [?℄.
Packet ProtocolsA proto
ol is a standard for 
ommuni
ation to ensure that a transmission goes to the right pla
e. Thereare the IP-level proto
ols.[??] Servi
e proto
ols, su
h as http, are dis
ussed above ((se
:http)).The Internet is a harsh environment for pa
kets ( A.15.2). If key data is in only a few pa
kets andthose are lost due to 
ongestion, serious problems 
an ensue. Often an adaptation is made to network



 A.15. Transmission and Networking 567environments by dropping frames. In 
urrent implementation, all pa
kets are given equal priority.
 A.15.3. Multimedia and Hypermedia and NetworkingMultimedia networking has spe
ial requirements. Even small delays 
an make a di�eren
e in transmis-sions, so s
alability is important.

Networking and Special EffectsWhere in network are spe
ial e�e
ts 
ompleted? Re
onstru
t fades later lo
ally [?℄. Real-time intera
-tion.
Network-Scalable Multimedia ServicesA traditional video stream has �xed-rate bit streams. However, intera
tive multimedia servi
es areoften \bursty" (Fig. ??).

 A.15.4. Audio DeliveryBe
ause it has lower bandwidth requirements, audio servi
es are easier to develop in the short termthan are video servi
es.Internet telephony. This 
an mean many things to many people. ITU H.323. The problem of 
ongestionalong routes 
an be a signi�
ant fa
tor. However, many internet telephony servi
es run P2P proto
ols.The telephone is a real-time multimedia servi
e. Indeed, the real-time restri
tions are stri
ter here thanfor delivery of audio or video; very little delay 
an be tolerated.Repair of audio, In many 
ases, audio is fairly predi
table. Thus, if a pa
ket and its data are lost agood guess 
an be made about how to repla
e it.Communi
ation servi
es su
h as live telephony have very stringent network requirements. VOIP, voi
eover IP.
Figure  A.137: VOIP.

 A.15.5. Video DeliveryS-Video, Composite video.[??]
Video Broadcast and NetworkingVideo is not one te
hnology but many. There is a fundamental distin
tion between analog and digitaltransmission. You are probably most familiar with analog video, whi
h is broad
ast or delivered by
able to your television. Most new video te
hnologies are digital. Digital video allows pi
tures to be
omputer-pro
essed. Spe
ial e�e
ts 
an be generated and frame rates and 
ompression 
an be easily
ontrolled. Digital video generally requires very large amounts of data 
ompared to images and evenaudio. Low-level networking issues and video hardware are dis
ussed in  A.18.0.Digital video also allows for delivery of video by pa
ket networks. In the near future, broad
ast qualityvideo is not likely to be 
arried on the Internet be
ause of the large amounts of data involved. Asgigabit networks and satellite delivery are more widely deployed, this may be
ome 
ommon.
Analog Broadcast VideoBroad
ast television started as bla
k-and-white.As 
olor television was developed, it was ne
essary to allow the large number of existing bla
k-and-whitetelevision sets to be able to re
eived programs transmitted in 
olor and to allow 
olor television sets
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eive bla
k-and-white programs. Thus, the 
olor signal was superimposed on the bla
k-and-whitesignal. SMPTE (So
iety of Motion Pi
ture and Television Engineers) standards were established to dothis, and to handle the spe
ial 
ases of 
olor superimposedon an analog broad
ast signal.There are two widely used broad
ast formats: NTSC and CECAM-PAL. NTSC is used in NorthAmeri
a while CECAM-PAL is used in most of the rest of the world.High-de�nition television (HDTV) is a widely dis
ussed standard.
Digital VideoThere are many ways of transmitting data by wire. In addition, digital video 
an be pro
essed in otherways. Video on demand is one servi
e that 
an be provided with this te
hnology.Digital video is delivered over the network or by wireless. Digital Video Broad
ast (DVB) 
an be ofhigher quality than analog. The ATSC (Advan
ed Television Standards Committee) establishes 
riteriafor DVB.In streaming video, frames are sent and viewed 
onse
utively as they arrive. Streaming may be moreeÆ
ient; viewing of a video 
an start sooner be
ause one does not have to wait for an entire �le todownload. One limitation with streaming is that there may be 
ongestion in the network and someframes may arrive late or not at all. A se
ond limitation is that streaming video is usually uni
ast,that is, only one 
lient is 
onne
ted to the server at one time. Multi
asting allows many people to beserved by a single a video sour
e while minimizing network load.Combining video with many other servi
es.Multi
asting may also be used for other servi
es su
h as distribution of audio and games.

 A.16. The InternetThe Internet is the international 
olle
tion of pa
ket networks whi
h implements the Internet Proto
ol(IP). It was designed as a distributed network to promote robustness and survivability. During the1980's private networks grew but many of these used proprietary proto
ols and were inter
onne
ted.
The Physical Internet While we have fo
used on proto
ols, but, of 
ourse, the Internet is made up of
ommuni
ation lines and routers. Avoiding 
ongestion ( A.16.0). Map of the InternetWhile it is relatively easy to provide high speed network 
onne
tivity on major trunks. Feeding that
onne
tivity out to individual lo
ations. Last-mile problem.
Layers of Service Layering is a good strategy for managing 
omplexity (7.7.1). Fig.  A.138 showsthe ISO Open System Inter
onne
t (OSI) layers for servi
es. Layering for separating the 
omplexity

(7.7.1). This spe
i�
ation is fo
used on the network and not on the servi
es. Ideally, the layers shouldbe independent of ea
h other. Referen
e model for how a network should be built.
Layer Description Example

1 Application

2 Presentation

3 Session Circuit connection

4 Transport TCP

5 Network IP

6 Data Link binary data

7 Physical cables

Figure  A.138: The ISO OSI 7-layer model. Each layer is designed to operate separately from the others.
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reendump of router se up.
 A.16.1. Internet Economics and PoliciesInformation networks are embedded into the so
ial fabri
.E
onomi
s (8.7.0). Network e
onomi
s.Moving 
omputing or moving data.Pa
kets and network e
onomi
s [76]. Impra
ti
ality of 
harging per pa
ket. Peering.

Figure  A.139: Internet peering. (redraw) (check permission)Boundary gateway proto
ol (BGP).Internet stru
ture is des
ribed in ( A.16.0). The 
at-rate business model was instrumental in generatingbusiness. Business models for the Internet. Measuring traÆ
. Pri
ing. Net neutrality. Dark networks.
 A.16.2. Regulating the InternetControlling Internet a
tivities by national laws [33].Government regulation. Cross-border regulation.

Real-Time Services on the InternetThe Internet transmits pa
kets but they may be delayed or destroyed. For instan
e, if too many pa
ketsarrive at a swit
h at a given time, the bu�er may over
ow and some of the pa
kets might be dis
arded.Even if they are not dis
arded, they may be delayed.For email, these delays are not signi�
ant but for real-time intera
tion, only minimal delays 
an betolerated. While the Web is mostly text and images, as we have seen throughout this book, multimediais 
onstantly in
reasing.A variety of new Internet servi
es have been proposed, in
luding IPv6. Charging and wireless.Bu�ering of transmitted information.[??]
Real-Time Protocols A variety of proto
ols for real-time IP servi
es have been proposed. UDP pa
ketsare sometimes preferred for multimedia be
ause of the speed.Robust IP Multi
ast.
Quality of Service Guarantees The Internet is highly distributed and has many bottlene
ks.Quality of Servi
e (QoS) guarantees and multimedia (blo
king and laten
y). Requires 
ooperation fromrouters.
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ongestion from pa
kets on the network.Alternatives to real-time Internet delivery,[??]
 A.17. Computing Architectures and Operations
 A.17.1. Theory of ComputationWhat is the way to organize 
omponents su
h as swit
hes and memory to do 
omplex 
omputation.Turing [74].Intera
tive 
omputing [5].The basi
 units of a Von Neuman 
omputer [77]. 1. Arithmeti
 unit, 2. Memory 3. Control 4.Input/Output (Fig.  A.140).

Instruction space: Memory space:
x=x+1; x
z=x+y; y

z

Figure  A.140: Stored programs need both instruction-memory space and a data-memory space.

 A.17.2. Computer Programming LanguagesE�e
tiveness.
Machine LanguageInstru
tion spa
e and data spa
e.
Formal Properties of Programming LanguagesOne attribute of a programming language is the ability to express 
omplex material. The ability to doany type of 
omputation is known as being \Turing 
omplete".Useful for applying algorithms for 
ompleting 
ertain tasks.Formal languages (6.5.2). Parsing and 
ompiling,

 A.17.3. CPU ArchitecturesThe 
omplexity of the algorithms wired dire
tly into a CPU 
hip a�e
ts its size, speed, and the heat itgenerates. Thus, 
hip designers have two approa
hes.Booleans are the basis of the gates used in digital logi
 (Fig.  A.141). (3.9.2,  A.7.1).
Figure  A.141: Logic circuits. The OR gates and the AND gates. (redraw)A 
omputer may be 
alled on to do a wide range of 
al
ulations. When designing CPUs, there wasa tenden
y introdu
e instru
tions for and many of those 
omputations as possible. This resulted inso-
alled Complex Instru
tion Set (CISC) 
hips.However, the CISC 
hips were more diÆ
ult to manufa
ture, were more spe
ialized, and 
onsumedmore heat when operating. Thus, the 
hip makers de
ided it was better to simplify the number of
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tions. This resulted in Redu
ed Instru
tion Set (RISC) 
hips.Re
on�gurable 
omputing.Graphi
s 
omputing. Cell pro
essor.
 A.17.4. Distributed Problem Solving
 A.17.5. Parallel ComputingA distributed system has several 
omputer pro
essors 
onne
ted by a network while the network 
on-ne
tions are fairly fast, they are not nearly as fast inter
onne
ted systems with a shared bus. These
entrally 
onne
ted 
omputers are 
all \parallel". There are many ways they 
an be inter-
onne
ted.Fig.  A.142 shows multiple streams with 
rossovers. In this 
on�guration, the results for ea
h stage arepassed to all pro
essors a
tive in the se
ond stage. \pipeline" model.Mesh networks.Cell 
omputing.Coordination and 
omputation.Parallel algorithms.For some other problems, arbitrary ex
hanges between pro
essors (Fig.  A.143). There are severaldi�erent ar
hite
tures.
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Figure  A.142: A parallel computer has multiple connected CPUs.
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Figure  A.143: A cube architecture allows the shortest path for communication among the nodes. We can easily
visualize a 3-D cube but it is also easy to wire nodes into higher-dimensional cube, “hypercube,” architectures.Spe
i�
 algorithms 
an mat
h these ar
hite
tures.Multi
ore pro
essors.

 A.17.6. Grid ComputingWe brie
y 
onsidered grid 
omputing (7.8.1).Networking, storage, and 
on
urren
y.
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Large Scale Distributed StorageDelay a
ross storage.BigTable.Storage resour
e broker [13]. Rule spe
i�
ation. iRODS.Peer to peer system for storage. LOCKSS Preventing groups from. Grid 
omputing, the storageresour
e broker [14].\The SDSC Storage Resour
e Broker (SRB) is 
lient-server middleware that provides a uniform interfa
efor 
onne
ting to heterogeneous data resour
es over a network and a

essing repli
ated data sets. SRB,in 
onjun
tion with the Metadata Catalog (MCAT), provides a way to a

ess data sets and resour
esbased on their attributes and/or logi
al names rather than their names or physi
al lo
ations". QUOTEMove data around the net based on 
luster analysis of how it is used. Importan
e of keeping a singlemaster 
opy. Data storage (Fig. ??). DiÆ
ulty of updates.
Figure  A.144: BigTable.

 A.17.7. Models of ComputationBla
kboards.Neural networks ( A.11.4).
Autonomic ComputingGet the system to optimize itself. Self-aware, self-healing [2].

 A.18. Input/Output DevicesAlthough digital pro
essing is in
reasingly important, it is often ne
essary to understand the e�e
ts ofphysi
al pro
esses. Input/output devi
es.
 A.18.1. Audio DevicesTransdu
er for audio.[??]

MicrophonesA mi
rophone 
onverts sound in air to ele
tri
 signals. Dire
tional mi
rophones. Cone of sensitivity.
Figure  A.145: Microphone. (re-draw-K)
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SpeakersSpeakers 
reate pressure waves from ele
tri
al signals; a speaker's sound box 
an provide resonan
e.Di�erent speakers are used for di�erent pit
hes.
Specialized Audio Processing A-to-D, Digital Signal Pro
essing (DSP) 
hips.[??]

 A.18.2. Visual and Video DevicesHow to 
apture and present an array of signals. Here, we brie
y survey several te
hnologies. Digital
inema.
Printing TechnologyPaper and ink. E-Ink �gure. (Fig.  A.146).

Figure  A.146: Black-and-white balls with different electrostatic charges are placed in a clear larger ball. Applying
an external charge causes the balls to separate[4]. (check permission)

Cameras and ScanningCharge 
oupled devi
es (CCDs) | solid state 
ameras. S
anning is the usual approa
h for digitizing apaper do
ument or pi
ture. It may be done at di�erent resolutions; after s
anning, the bitmap 
an be
ompressed. On
e s
anned, images 
an be ar
hived, distributed, or pro
essed.S
anners or digital 
ameras digitize and analyze small areas of a pi
ture and measure the brightness or
olors in that small area.E�e
tiveness for reprodu
ing readable text. The quality of the s
anning for the resolution is shownwith the \quality index" (Eq.  A.30). [42]

Quality Index = h ∗ dpi; ( A.30)For fragile materials, it is ne
essary to employ non-destru
tive s
anning.
Video DisplaysRefresh rate. Number of pixels on a standard television display.[??] The \aspe
t ratio" of a video displayis that of length to width. Larger over smaller. Fig.  A.147 
ontrasts the aspe
t ratio of television (A,B) with the aspe
t ratio for 
inema (C).

A B C
Figure  A.147: The aspect ratio is the ratio of the width of a display to its height. The ratio remains constant although
the absolute size may change. The ratio 4-to-3, as shown in Panels A and B is the standard for video. While the
ratio 16-to-9, as shown in C is used for cinema.
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ing. The pi
ture is presented on the s
reen with rasters. Ve
torgraphi
s. Raster.Broad
ast video. Verti
al blanking interval. Di�eren
e in frame rates, 
olor depth, et
.Readability of displays (10.3.1) [34].Rather than 
reating a sharp boundary at the edge of a 
hara
ter, whi
h often appears as jaggies,anti-aliasing makes the boundary with a gradual fade to gray. Fig.  A.148 shows anti-aliasing.
Figure  A.148: Rather, than a sharp edge, pixels in a display create a jagged edge (left). To create the appearance
of a smoother edge, the edge pixels are grayed out.Pen tiling of display 
olors.

BitMap Displays(Fig.  A.149)
Figure  A.149: Memory management for bit-map displays.Overlapping Windows.

Other Types of Displays
Stereoscopic 3-D A variety of te
hnologies have been developed to make stereos
opi
 3-D presenta-tions.
Head-Mounted Displays and Head Tracking Head tra
king.
Technologies for Personalized Displays Retinal painting.[??]
Immersive Display TechnologiesDisplays 
annot have the same degree of �delity as reality. In one study of a virtual reality system[56],the display was 0x120, 93-degrees by 61-degrees.
Volumetric DisplayVolumetri
 displays [16]. Painting into plasma.
Printing TechnologyResolution, DPI (dots per in
h).[??]CMYK 
olor, a variation of RGB ( A.2.3), is used for printing.
3-D Hard Copy [1]
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 A.19. Sensor TechnologySensors are, typi
ally, simple devi
es whi
h dete
t attributes of a system's environment. Attributessu
h as motion, sound, temperature, air quality, and light are all easy to monitor. Bio sensors. Likeyou own eyes or ears, typi
ally, sensors have relatively little 
omplex pro
essing 
apability of their own.
 A.19.1. Sensor DevicesSensor dete
t properties of the physi
al world. There are many types of sensors su
h as body sensors.Transdu
ers.

Bar CodesLow 
ost way to dete
t portable obje
ts. Laser s
anning and re
e
tion. Bar 
odes (Fig.  A.150). Thespa
ing of the lines. A spa
e 
an represent a binary 
ode. There are di�erent 
oding systems. One
ommon system is The Universal Produ
t Code (UPC) was developed to identify produ
tion. QR
odes. Near-�eld 
ommuni
ation (NFC).
Figure  A.150: Bar codes represent numbers with a binary code.

Radio Frequency Identification (RFID)Passive 
hip sensor whi
h responds to an external �eld with 
oded information (Fig.  A.151).Near-�eld 
ommuni
ation. A�e
ted by interferen
e.EPC - ele
troni
 produ
t 
odes.RFIDs have many appli
ations. Use of RFIDs in hospitals in order to lo
ate patients. Threats topriva
y.

Figure  A.151: How an RFID sensor works[10]. (check permission)

 A.19.2. Sensor Networks and Sensor FusionSensors 
an be 
onne
ted in networks.Typi
ally they have simple pro
essors, limited memory 
apa
ity, and limited power.
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onsider two spe
i�
 systems. The signals from these sensors are pro
essed by sensor fusion
( A.19.2). Hierar
hi
al fusion versus mesh or grid fusion. Fusion of similar data versus fusion of dissimilardata.This often means that low-level information is pro
essed within the network. Sensor fusion 
ombinesinformation from many sour
es (Fig.  A.152). There is a 
hallenge about how to weight the informationappropriately.Hierar
hi
al sensor networks and 
ommuni
ation in sensor networks.Many appli
ations: Sensor fusion for emergen
y room data. RFID ( A.19.1).Generating too mu
h data. We need to automati
ally �lter the data. We attend to (4.2.2) to signi�
antinformation.This is often noisy information with ambiguity. During the Cold War, the U.S. Navy maintained anarray of sensors in the North Pa
i�
. These sensors had to be able to distinguish submarines fromwhales swimming in the o
ean.Distributed de
ision making.S
ienti�
 instruments and data storage.Priva
y issues from potentially invasive sensor networks.One approa
h is hierar
hi
al summarization Fig.  A.152.There 
an be lo
al intera
tions among the units su
h as ex
itation or inhibition of neighbors. Sensorsand feedba
k. Parallel 
omputing ( A.17.5).

Figure  A.152: Data from many sources needs to be combined. Hierarchical organization of sensors.

Figure  A.153: A “sensor grid” is composed of sensors arranged on a grid. The first level of processing can be
communicating and combining evidence with neighbors.

 A.20. Storage Technology
 A.20.1. Storage Media

Magnetic StorageHeli
al s
an video. Many formats.[??]Iron-oxide. heads.There are many media for storing digital information; here, we 
onsider magneti
 tapes, magneti
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Figure  A.154: Ecological sensor network in Duck Island Maine. (check permission)disks and opti
al storage. Storage systems must be reliable. Although many te
hnologies have beendeveloped, magneti
 disks are so widely deployed that they are hard to beat.The oxide on re
ording tapes has a lifetime of about 10 years, after whi
h it be
omes unstable. Oldtapes may be baked before being played whi
h 
auses the oxide to adhere.Many television programs are mastered on �lm to better preserve them.
Optical StorageLasers allow �ne resolutions of data to be made on a metalli
 surfa
e, as, for example, on a CD.There is about 650 MB of spa
e on a CDROM. This is about 68 minutes of sound re
ordings at 
onstantbit rate. 16-bit en
oding on a spiral tra
k.[??]

Figure  A.155: Reading from a DVD. (check permission)The digital video disk (DVD) 
an store 4.4 GB per disk. It has a double layer of re
e
tive materialand is double sided. It also improves the density of storage by using a blue laser for reading the diskrather than the red lasers used by the CDROM.
 A.20.2. Low-Level Data Storage

Parity and Check SumChe
k that the data has not be 
orrupted when it is transmitted on a network or stored on a disk.Che
ksum for 
redit 
ard veri�
ation. Fig.  A.156. If any of the bits in the data have been 
orrupteda re
al
ulation of the parity bit may 
ag the problem.Error-
orre
ting 
odes.
Parity

Data bit

0 1 0 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1

Figure  A.156: A parity bit is calculated as a count of the number of even or odd bits.

Placement of Content on Disk DrivesThere are physi
al restri
tions on how data 
an be pla
ed on a disk. The data must be pla
ed on
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ks, and the heads must be positioned above those tra
ks in order to read the 
ontent.When multimedia 
ontent are stored on a disk.Striping, Speed of streaming.Disk 
a
hing. Random positions are better than standard pla
ement.
Archival StorageAll physi
al storage media are unreliable. We want to be sure that one reliable 
opy of a do
ument ispreserved. Digital preservation earlier (7.5.1). How to be sure that the originals are not able to be easily
orrupted. LOCKSS proto
ol (Fig.  A.157). When numerous sites are polled, they 
an essentially takea vote to determine whether any of the 
opies has been 
orrupted. If a 
orrupted �le is found, the goodversion 
an repla
e it.

Figure  A.157: In the LOCKSS protocol, a target version of a document can request that a comparison be made
with other stored versions of the same document[59]. If a discrepancy is found a voting procedure determine which
copy has, most likely been corrupted. (redraw)(check permission)
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